首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

2.
As osmolytes and signaling molecules, soluble sugars participate in the response and adaptation of plants to environmental stresses. In the present study, we measured the effect of chilling (12 °C) stress on the contents of eight soluble sugars in the leaves, cotyledons, stems, and roots of Jatropha curcas seedlings, as well as on the activities of eight rate-limiting enzymes that are critical to the metabolism of those soluble sugars. Chilling stress promoted both starch hydrolysis and soluble sugar accumulation. The soluble sugar contents of the leaves and cotyledons were affected more than that of the stems and roots. Meanwhile, the activities of the corresponding metabolic enzymes (e.g., β-amylase, uridine diphosphate glucose phosphorylase, and sucrose phosphate synthase) also increased in some organs. The gradual increase of soluble neutral alkaline invertase activity in the four studied organs suggested that sucrose catabolic production, such as glucose and fructose, was especially important in determining resistance to chilling stress and hexose signal transduction pathway. In addition, the substantial accumulation of raffinose family oligosaccharides and increase in corresponding metabolic enzyme activity suggested that galactinol and raffinose play an important role in determining the chilling resistance of J. curcas. Together, these findings establish a foundation for determining the relationship between the chilling resistance and soluble sugar accumulation of J. curcas and for investigating the mechanisms underlying sugar signaling transduction and stress responses.  相似文献   

3.
The soybean vegetative storage proteins, VSP and VSP, are acid phosphatases that accumulate to very high levels in hypocotyls, young leaves and flowers and pods. The genes encoding the soybean VSP are activated by jasmonate, wounding, sugars and light and down regulated by phosphate and auxin. In this study, expression of an Arabidopsis thaliana gene (Atvsp) encoding a protein homologous to soybean Vsp and Vsp, was examined and compared to expression of the soybean Vsp genes. Atvsp mRNA was present at high levels in flowers and buds and at low levels in roots, stems, leaves and siliques. Expression of Atvsp in leaves could be induced by wounding or by treatment of illuminated plants with methyl jasmonate and sucrose. Roots of plants with wounded leaves also accumulated Atvsp mRNA indicating that this gene can be regulated by a transmissible wound signal. Phosphate partially inhibited expression of Atvsp. Arabidopsis proteins of 29 and 30 kDa crossreacted with antibodies against soybean VSP. These proteins were very abundant in flowers and the proteins accumulated in leaves and roots of plants treated with methyl jasmonate. The level of these proteins in flowers was similar to the levels of soybean VSP in young soybean leaves. Overall, these data indicate that Arabidopsis Atvsp and soybean VspA/B genes are regulated similarly and that in both plants, the gene products can accumulate to high levels. This suggests that genes homologous to VspA/B may be of greater general significance than previously recognized.  相似文献   

4.
5.
The changes of ethanol soluble carbohydrates in leaves, stems,roots and ears of the wheat cultivars Yecora (semi-dwarf andearly) and Generoso (taller and late) were followed during developmentin the field with and without irrigation. Sucrose concentrationremained at low levels during the vegetative phase in all vegetativeorgans except in the roots of Yecora, but increased consistentlyafter ear emergence. Reducing sugars were at low concentrationsthroughout leaf development, but increased towards maturationin the roots and, more dramatically, in the stems of the non-irrigatedtreatment. Sucrose levels remained relatively stable in theears, whereas glucose and fructose fell during grain filling.Raffinose was detected at low levels only in the ears. Yecoraaccumulated more sucrose in the leaves and roots before headingas a response to temporary water stress. From correlations betweenthe leaf water potential and the corresponding values of theexamined sugars, as well as from the examination of the timecourses in the two treatments, it was found that only sucroseaccumulation was related on several occasions with increasingwater stress. No systematic differences between the cultivarswere found in the association of sugars with plant water status. Wheat, Titicum aestivum, cultivars, soluble sugars, water stress  相似文献   

6.
Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (Ψw) of −2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule Ψw also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule Ψw of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.  相似文献   

7.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

8.
9.
Plant responses to water deficit occur in a complex framework of organ interactions, but few studies focus on the effect of drought stress on all organs in a whole-plant. The effects of repeated dehydration and rehydration (DH) on physiological and biochemical responses in various organs of Periploca sepium Bunge (P. sepium) were investigated. The leaf relative water content decreased significantly during drought, but recovered and showed an increase when compared to well-watered control plants. The malondialdehyde (MDA) content increased in mature and old leaves, but decreased in young leaves, new stems and fine roots during drought, indicating that the young and vigorous tissues of a whole-plant are protected preferentially from the oxidative stress. Among all organs, the fine roots showed the highest levels of proline, total free amino acids (TFAA) and Na+, while the leaves showed the highest levels of total soluble sugars (TSS), soluble proteins (SP), Ca2+ and Mg2+. The response to DH differed in different organs, both in magnitude and in the type of solutes involved. Drought stress increased the contents of proline, TFAA, TSS, SP and K+ in all organs of P. sepium plants, while the accumulation amounts were obviously different among the organs. The storage starch in stems and roots plays an important role in providing carbohydrates for growth. Changes in Na+, Ca2+ and Mg2+ under DH presented a high degree of organ specificity. Our data indicates that response strategies are different between different organs; therefore, evidence the needs to integrate all the information in order to better understand plant tolerance mechanisms.  相似文献   

10.
Short-term (31-hour diurnal) growth-chamber studies were conducted to determine the effects of removing the vegetative apex (meristem and developing trifoliolate leaves) on net photosynthesis (changes in plant dry weight), on distribution of metabolites among plant parts, and on nitrate metabolism and reduced-N accumulation by soybean [Glycine max (L.) Merr.] seedlings. Roots and stems served as alternate sinks for dry matter accumulation in the absence of the vegetative apex. Sugar concentration in roots increased (42%) within 4 hours of vegetative apex removal, and remained higher than for the controls during the 31-hour experimental period. Nitrate assimilation (nitrate reductase activity and total accumulation of reduced-N) was also enhanced in response to vegetative apex removal. Although dry matter accumulation was similar between treated and control plants (113 versus 116 milligrams per plant) over the 31-hour sampling period, more nitrate (1.31 versus 0.79 milligrams per plant) and more reduced-N (3.96 versus 3.45 milligrams per plant) accumulated in treated plants during the same interval. It was concluded that vegetative apex removal had little effect on overall net photosynthesis of soybean seedlings during the 31-hour treatment period, but did alter partitioning of photosynthate and enhanced uptake, transport, and reduction of nitrate. Implications are that uptake and metabolism of nitrate by soybeans may be limited by flux of carbohydrate to the roots, although hormonal effects due to vegetative apex removal cannot be ruled out.  相似文献   

11.
Variation in Cd accumulation between Nicotiana species but not varieties has been observed in seedlings grown in solution culture with moderate-to-low levels of Cd. Nicotiana tabacum has been characterized as a leaf and root accumulator while Nicotiana rustica is shown to be primarily a root accumulator, having about half the leaf Cd per gram dry weight of N. tabacum. This phenotype is retained in the mature N. rustica plant. To characterize these two species which differ in their modes of Cd accumulation, tissue Cd distribution, partitioning of metal in soluble and insoluble fractions and the contribution of soluble Cd-binding proteins (peptides) to total plant Cd was assessed using mature solution cultured plants. Metal accumulation was highest in the most mature leaves and in young roots. The preponderance of young roots in N. rustica may, in part, account for low leaf/high root Cd accumulation in this species. While Cd-binding peptides appear to be a principal form of Cd in leaves and roots of seedlings and these also occur in mature leaves, Cd is equally distributed between soluble (about 80% as Cd-binding peptide) and uncharacterized insoluble forms in mature plant roots.  相似文献   

12.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

13.
Unsuitable temperatures are frequently encountered by soybean(Glycine max L. Merr.) plants grown in the field. Certain polyolshave been reported to protect plants from high temperature orfrost damage. Controlled environment studies were conductedto investigate the effect of stressful temperature regimes onthe content of pinitol (3-O-methyl-D-chiro-inositol) in soybeanplants. Hydroponically-grown soybean plants were subjected tohigh (35/30 C) or low (15/10 C) day/night temperature stresses,and pinitol content in different plant parts was determinedusing high performance liquid chromatography (HPLC). A syntheticplant growth regulator, PGR-IV, was foliarly applied to theplants to evaluate its effect on pinitol content in differentplant components. Uniformly-labelled 14C-glucose was fed intothe leaves via the transpiration stream, and the effects ofhigh temperature and EXP-S1089, another synthetic plant growthregulator, on the incorporation of 14C-glucose into pinitolwas evaluated using HPLC separation and scintillation spectrometry.High-temperature stress significantly increased plant pinitolcontent and the incorporation of 14C-glucose into pinitol, butdecreased the content of sucrose, glucose and fructose. Underlow-temperature stress, there was hardly any change in pinitolcontent, but a drastic increase in soluble sugars. PGR-IV enhancedpinitol translocation from leaves to stems and roots, whileEXP-S1089 increased pinitol/sucrose ratio. Accumulation of pinitolmay be an adjustment mechanism of the plant to reduce high-temperaturedamage, but not low-temperature injuries. Key words: Pinitol, soybean, temperature, plant growth regulator  相似文献   

14.
Two cDNA clones representing mRNAs which are differentially expressed during in vitro culture of juvenile and mature leaf petioles of English ivy ( Hedera helix L.) were isolated by differential screening. The mRNA represented by clone HW101 is expressed at a higher level in untreated juvenile than in untreated mature in-vitro-cultured petioles. Treatment of petioles with α-naphthaleneacetic acid (NAA) at the initiation of culture decreases HW101 mRNA levels in juvenile but not mature, petioles. In intact plants. HW101 mRNA is expressed at a higher level in juvenile laminae, petioles and stems than in identical tissues of mature plants. DNA sequence analysis indicates that HW1O1 cDNA is significantly similar to a light harvesting chlorophyll a/b binding protein gene ( Lhcb ) of pea. The gene represented by the second clone. HW103, is expressed at a higher level in mature than in juvenile in-vitro-cultured petisoles. Treatment of petioles with NAA at the initiation of culture decreases HW103 mRNA levels in chronologically young mature but not older mature and juvenile petioles. However, expression of the HW103 gene is not detectable in petioles, or in any other vegetative organ tested, immediately after excision. It is, however, expressed in developing seeds. In otherwise intact plants, the HW103 gene is expressed in wounded petioles of mature plants 5 days after wounding but not in wounded petioles of juvenile plants. It is also expressed at a higher level in wounded stems of mature plants than in those of juvenile plants. However, it is not expressed in wounded lamina of either juvenile or mature plants. DNA sequence analysis indicates that HW103 cDNA is similar to a cell wall proline rich protein (PRP) gene of soybean. This is the first report of differential expression of a PRP gene in tissues from juvenile and mature plants. Southern blot analysis of nuclear DNA of H. helix shows that both HW101 and HW103 are members of small gene families.  相似文献   

15.
The rates of sulphate transport into intact and excised rootsof soybean (Glycine max L.) were not significantly differentin the first hour and were maximal at pH 7. However, intactroots accumulated four times as much sulphate as excised rootsin 24 h, because of a marked reduction in the rate of transportby excised roots. The continued high rates of transport intointact roots were observed in plants kept in the light, andobserved in darkened plants growing in 1 per cent sucrose. Similarly,sulphate accumulation by excised roots was stimulated 2-foldby 1 per cent sucrose. The characteristics of sulphate accumulation by roots were notuseful in predicting sulphate translocation to the leaves. Transportto the leaves was maximal at pH 2–3, was almost totallylight-dependent and was not enhanced by growing plants in sucrose. Sulphate transport, Glycine max L., soybean, excised roots  相似文献   

16.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

17.
Summary Mechanical wounding of potato leaves, stems, roots and tubers leads to a rapid increase of wun1 mRNA. In potato leaves, the wound-induced accumulation of wun1 mRNA is inhibited by the addition of sucrose or other osmotically active agents. This inhibition is organ specific since sucrose does not prevent wun1 mRNA accumulation in wounded tubers. In contrast, expression of patatin was shown to be repressed in tubers by wounding and this repression was reversed by increasing osmotic pressure. Sequence data obtained from the analysis of a wun1 cDNA and a wun1 genomic clone show no homology to any gene known so far. Histochemical data demonstrate a striking analogy in cell specific expression of chimeric genes expressed under the control of the wun1 promoter and the cell specific production of callose in wounded tobacco leaves.  相似文献   

18.

Background  

Developing monocots that accumulate more vegetative tissue protein is one strategy for improving nitrogen-sequestration and nutritive value of forage and silage crops. In soybeans (a dicotyledonous legume), the vspA and B genes encode subunits of a dimeric vegetative storage protein that plays an important role in nitrogen storage in vegetative tissues. Similar genes are found in monocots; however, they do not accumulate in leaves as storage proteins, and the ability of monocot leaves to support accumulation of an ectopically expressed soybean VSP is in question. To test this, transgenic maize (Zea Mays L. Hi-II hybrid) lines were created expressing soybean vspB from a maize ubiquitin Ubi-1 promoter.  相似文献   

19.
Virus-induced gene silencing (VIGS) has great potential as a reverse-genetics tool in plant genomics. In this study, we examined the potential of VIGS in soybean seeds and the emergence stage of soybean plants using Apple latent spherical virus (ALSV) vectors. Inoculation of an ALSV vector (soyPDS-ALSV) carrying a fragment of the soybean phytoene desaturase (soyPDS) gene into soybean seedlings resulted in a highly uniform photo-bleached phenotype, typical of PDS inhibition, on the upper leaves throughout plant growth. The photo-bleached phenotype was also found on all immature pods, all seed coats, and about 50% embryos of seeds on soybean plants infected with soyPDS-ALSV. Infection with an ALSV vector (soyIFS2-ALSV) having a fragment of soybean isoflavone synthase 2 (soyIFS2) gene also led to a reduction of the levels of both soyIFS2- and soyIFS1- mRNAs and an isoflavone content in the cotyledons of about 36% mature seeds of infected soybean plants. Furthermore, VIGS of soyPDS was induced in the next generation plants by the seed transmission of soyPDS-ALSV. Thus ALSV vectors will be useful for studying gene functions in the reproductive stages and early growth stages, such as emergence and cotyledon stages, in addition to the vegetative stages of soybean plants.  相似文献   

20.
Elevated levels of monoterpenes and diterpene resin acids are produced in the stems of lodgepole pine (Pinus contorta var latifolia) saplings when wounded and inoculated with the blue-stain fungus Ceratocystis clavigera or when wounded and treated with a pectic fragment from tomato leaves (PIIF) or a fungal cell wall fragment (chitosan). This induced defensive response (hyperoleoresinosis) is the result of a transient rise in the ability to biosynthesize cyclic monoterpenes and diterpene resin acids as measured by the in vivo incorporation of label from [U-14C]sucrose relative to untreated controls, and is accompanied by a corresponding rise in the levels or activities of the relevant terpene cyclases as determined by in vitro assay using labeled acyclic precursors. The results indicate that juvenile P. contorta responds to infection and biotic elicitors much like the mature tree, and they suggest that the Pinaceae possess a mechanism for elicitor recognition and induced defense similar to that of other higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号