首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub‐family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing ‘half transporters’ are semi‐dominant and result in vascular patterning defects in cotyledons and the floral stem. Co‐immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.  相似文献   

2.
ABCG5 and ABCG8 are expressed in gallbladder epithelial cells   总被引:2,自引:0,他引:2  
Gallbladder epithelial cells (GBEC) are exposed to high biliary cholesterol concentrations on their apical (AP) surface. The mechanisms of cholesterol absorption and efflux by these cells are not known. We hypothesized that ABCG5 and ABCG8 are expressed in GBEC and mediate AP cholesterol efflux. Human gallbladder cDNA expressed message for ABCG5 and ABCG8. Cultured murine GBEC also expressed abcg5 and abcg8 mRNA and protein, as did cultured canine GBEC. Interestingly, treatment with model bile containing supersaturating concentrations of cholesterol, or treatment with LXRalpha/RXR ligands, did not lead to differences in expression of ABCG5 or ABCG8 in the murine or the canine cells. The subcellular localization of ABCG5 and ABCG8 did show alterations, with predominantly intracellular localization at baseline and predominantly AP localization following treatment with model bile or LXRalpha ligand. GBEC therefore express ABCG5 and ABCG8; these sterol transporters may play a role in mediating AP cholesterol efflux in the gallbladder epithelium.  相似文献   

3.
The ATP-binding cassette half-transporters ABCG5 (G5) and ABCG8 (G8) promote secretion of neutral sterols into bile, a major pathway for elimination of sterols. Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a recessive disorder characterized by impaired biliary and intestinal sterol secretion, sterol accumulation, and premature atherosclerosis. The mechanism by which the G5G8 heterodimer couples ATP hydrolysis to sterol transport is not known. Here we examined the roles of the Walker A, Walker B, and signature motifs in the nucleotide-binding domains (NBD) of G5 and G8 using recombinant adenoviruses to reconstitute biliary sterol transport in G5G8-deficient mice. Mutant forms of each half-transporter were co-expressed with their wild-type partners. Mutations at crucial residues in the Walker A and Walker B domains of G5 prevented biliary sterol secretion, whereas mutations of the corresponding residues in G8 did not. The opposite result was obtained when mutations were introduced into the signature motif; mutations in the signature domain of G8 prevented sterol transport, but substitution of the corresponding residues in G5 did not. Taken together, these findings indicate that the NBDs of G5 and G8 are not functionally equivalent. The integrity of the canonical NBD formed by the Walker A and Walker B motifs of G5 and the signature motif of G8 is essential for G5G8-mediated sterol transport. In contrast, mutations in key residues of the NBD formed by the Walker A and B motifs of G8 and the signature sequence of G5 did not affect sterol secretion.  相似文献   

4.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

5.
6.
Mutations in ABCG5 (G5) or ABCG8 (G8) cause sitosterolemia, an autosomal recessive disease characterized by sterol accumulation and premature atherosclerosis. G5 and G8 are ATP-binding cassette (ABC) half-transporters that must heterodimerize to move to the apical surface of cells. We examined the role of N-linked glycans in the formation of the G5/G8 heterodimer to gain insight into the determinants of folding and trafficking of these proteins. Site-directed mutagenesis revealed that two asparagine residues (Asn(585) and Asn(592)) are glycosylated in G5 and that G8 has a single N-linked glycan attached to Asn(619). N-Linked glycosylation of G8 was required for efficient trafficking of the G5/G8 heterodimer, but mutations that abolished glycosylation of G5 did not prevent trafficking of the heterodimer. Both G5 and G8 are bound by the lectin chaperone, calnexin, suggesting that the calnexin cycle may facilitate folding of the G5/G8 heterodimer. To determine the effects of 13 disease-causing missense mutations in G5 and G8 on formation and trafficking of the G5/G8 heterodimer, mutant forms of the half-transporters were expressed in CHO-K1 cells. All 13 mutations reduced trafficking of the G5/G8 heterodimer from the endoplasmic reticulum to the Golgi complex, and most prevented the formation of stable heterodimers between G5 and G8. We conclude that the majority of the molecular defects in G5 and G8 that cause sitosterolemia impair transport of the sterol transporter to the cell surface.  相似文献   

7.
Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels   总被引:4,自引:0,他引:4  
ABCG5 and ABCG8 transporters play an important role in the absorption and excretion of sterols. Missence polymorphisms (Gln604Glu in the ABCG5 and Asp19His, Tyr54Cys, Thr400Lys, and Ala632Val in the ABCG8) in these genes have been described. In 131 males and 154 females whose dietary composition markedly changed and lipid parameters decreased over an 8-year follow-up study (total cholesterol decreased from 6.21+/-1.31 mmol/l in 1988 to 5.43+/-1.06 mmol/l in 1996), these polymorphisms were investigated using PCR. Plasma lipid levels and changes in plasma lipid levels were independent of the Gln604Glu polymorphism in ABCG5 and Asp19His and the Ala632Val polymorphisms in ABCG8. The Tyr54Cys polymorphism influenced the degree of reduction in total plasma cholesterol (delta -0.49 mmol/l in Tyr54 homozygotes vs. delta +0.12 mmol/l in Cys54 homozygotes, p<0.04) and LDL-cholesterol (delta -0.57 mmol/l in Tyr54 homozygotes vs. delta +0.04 mmol/l in Cys54 homozygotes, p<0.03) levels between 1988 and 1996 in females, but not in males. Male Thr400 homozygotes exhibited a greater decrease in total cholesterol (delta -0.90 mmol/l vs. delta -0.30 mmol/l, p<0.02) and LDL-cholesterol (delta -0.62 mmol/l vs. delta -0.19 mmol/l, p<0.04) than Lys400 carriers. No such association was observed in females. We conclude that Tyr54Cys and Thr400Lys variations in the ABCG8 gene may play a role in the genetic determination of plasma cholesterol levels and could possibly influence the gender-specific response of plasma cholesterol levels after dietary changes. These polymorphisms are of potential interest as genetic variants that may influence the lipid profile.  相似文献   

8.
ATP-binding cassette (ABC) transporters form a large family of transmembrane proteins that facilitate the transport of specific substrates across membranes in an ATP-dependent manner. Transported substrates include lipids, lipopolysaccharides, amino acids, peptides, proteins, inorganic ions, sugars and xenobiotics. Despite this broad array of substrates, the physiological substrate of many ABC transporters has remained elusive. ABC transporters are divided into seven subfamilies, A-G, based on sequence similarity and domain organization. Here we review the role of members of the ABCG subfamily in human disease and how the identification of disease genes helped to determine physiological substrates for specific ABC transporters. We focus on the recent discovery of mutations in ABCG2 causing hyperuricemia and gout, which has led to the identification of urate as a physiological substrate for ABCG2.  相似文献   

9.
Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8   总被引:3,自引:0,他引:3  
The ATP binding cassette transporters ABCG5 (G5) and ABCG8 (G8) limit the accumulation of neutral sterols by restricting sterol uptake from the intestine and promoting sterol excretion into bile. Humans and mice lacking G5 and G8 (G5G8-/-) accumulate plant sterols in the blood and tissues. However, despite impaired biliary cholesterol secretion, plasma and liver cholesterol levels are lower in G5G8-/- mice than in wild-type littermates. To determine whether the observed changes in hepatic sterol metabolism were a direct result of decreased biliary sterol secretion or a metabolic consequence of the accumulation of dietary noncholesterol sterols, we treated G5G8-/- mice with ezetimibe, a drug that reduces the absorption of both plant- and animal-derived sterols. Ezetimibe feeding for 1 month sharply decreased sterol absorption and plasma levels of sitosterol and campesterol but increased cholesterol in both the plasma (from 60.4 to 75.2 mg/dl) and the liver (from 1.1 to 1.87 mg/g) of the ezetimibe-treated G5G8-/- mice. Paradoxically, the increase in hepatic cholesterol was associated with an increase in mRNA levels of HMG-CoA reductase and synthase. Together, these results indicate that pharmacological blockade of sterol absorption can ameliorate the deleterious metabolic effects of plant sterols even in the absence of G5 and G8.  相似文献   

10.
Role of ABCG1 and other ABCG family members in lipid metabolism   总被引:10,自引:0,他引:10  
  相似文献   

11.
12.
13.
ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile   总被引:1,自引:0,他引:1  
The major pathway for the removal of cholesterol from the body is via secretion into the bile. Three members of the ATP binding cassette (ABC) family, ABCG5 (G5), ABCG8 (G8), and ABCB4 (MDR2), are required for the efficient biliary export of sterols. Here, we examined the interdependence of these three ABC transporters for biliary sterol secretion. Biliary lipid levels in mice expressing no MDR2 (Mdr2-/- mice) were compared with those of Mdr2-/- mice expressing 14 copies of a human G5 (hG5) and hG8 transgene (Mdr2-/-;hG5G8Tg mice). Mdr2-/- mice had only trace amounts of biliary cholesterol and phospholipids. The Mdr2-/-;hG5G8Tg mice had biliary cholesterol levels as low as those of Mdr2-/- mice. Thus, MDR2 expression is required for G5G8-mediated biliary sterol secretion. To determine whether the reduction in fractional absorption of dietary sterols associated with G5G8 overexpression is secondary to the associated increase in biliary cholesterol, we compared the fractional absorption of sterols in Mdr2-/-;hG5G8Tg and hG5G8Tg animals. Inactivation of MDR2 markedly attenuated the reduction in fractional sterol absorption associated with G5G8 overexpression. These results are consistent with the notion that increased biliary cholesterol secretion contributes to the reduction in fractional sterol absorption associated with G5G8 overexpression.  相似文献   

14.
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of β-galactosidase-stained tissue sections from Abcg1−/−LacZ and Abcg4−/−LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4−/− mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.  相似文献   

15.
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8(+/+), Abcg8(+/-), and Abcg8(-/-) mice with hydrophilic and hydrophobic bile salts. In Abcg8(-/-) mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8(-/-) mice at a much lower infusion rate compared with Abc8(-/-) and Abcg8(+/-) mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8(-/-) mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.  相似文献   

16.
Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution   总被引:3,自引:0,他引:3  
ATP-binding cassette transporters G5 and G8 are half-transporters expressed on the apical membranes of enterocytes and hepatocytes that limit intestinal uptake and promote secretion of neutral sterols. Genetic defects that inactivate either half-transporter cause accumulation of cholesterol and plant sterols, resulting in premature coronary atherosclerosis. These observations suggest that G5 and G8 promote the translocation of sterols across membranes, but the primary transport substrate of the G5G8 complex has not been directly determined. Here we report the development of a sterol transfer assay using "inside-out" membrane vesicles from Sf9 cells expressing recombinant mouse G5 and G8. Radiolabeled cholesterol or sitosterol was transferred from donor liposomes to G5- and G8-containing membrane vesicles in an ATP-dependent and vanadate-sensitive manner; net transfer of cholesterol was associated with an increase in vesicular cholesterol mass. CTP, GTP, and UTP, as well as ATP, supported transfer but with lesser efficiency (ATP > CTP > GTP > UTP). Transfer was specific for sterols and was stereoselective; minimal ATP-dependent and vanadate-sensitive transfer of cholesteryl oleate, phosphatidylcholine, or enantiomeric cholesterol was observed. These studies indicate that G5 and G8 are sufficient for reconstitution of sterol transfer activity in vitro and provide the first demonstration that sterols are direct transport substrates of the G5 and G8 heterodimer.  相似文献   

17.
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 lead to sitosterolemia, a disorder characterized by sterol accumulation and premature atherosclerosis. ABCG5 and ABCG8 are both half-size transporters that have been proposed to function as heterodimers in vivo. We have expressed the recombinant human ABCG5 and ABCG8 genes in the yeast Pichia pastoris and purified the proteins to near homogeneity. Purified ABCG5 and ABCG8 had very low ATPase activities (<5 nmol min(-)(1) mg(-)(1)), suggesting that expression of ABCG5 or ABCG8 alone yielded nonfunctional transporters. Coexpression of the two genes in P. pastoris greatly increased the yield of pure proteins, indicating that the two transporters stabilize each other during expression and purification. Copurified ABCG5/G8 displayed low but significant ATPase activity with a V(max) of approximately 15 nmol min(-)(1) mg(-)(1). The ATPase activity was not stimulated by sterols. The catalytic activity of copurified ABCG5/G8 was characterized in detail, demonstrating low affinity for MgATP, a preference for Mg as a metal cofactor and ATP as a hydrolyzed substrate, and a pH optimum near 8.0. AlFx and BeFx inhibited MgATP hydrolysis by specific trapping of nucleotides in the ABCG5/G8 proteins. Furthermore, ABCG5/G8 eluted as a dimer on gel filtration columns. The data suggest that the hetero-dimer is the catalytically active species, and likely the active species in vivo.  相似文献   

18.
Wang J  Zhang DW  Lei Y  Xu F  Cohen JC  Hobbs HH  Xie XS 《Biochemistry》2008,47(18):5194-5204
ABCG5 (G5) and ABCG8 (G8) are ATP-binding cassette half-transporters that limit intestinal uptake and promote biliary secretion of neutral sterols. Here, we describe the purification of endogenous G5G8 from mouse liver to near homogeneity. We incorporated the native proteins into membrane vesicles and reconstituted sterol transfer. Native gel electrophoresis, density-gradient ultracentrifugation, and chemical cross-linking studies indicated that the functional native complex is a heterodimer. No higher order oligomeric forms were observed at any stage in the catalytic cycle. Sterol transfer activity by purified native G5G8 was stable, stereospecific, and selective. We also report that G5 but not G8 is S-palmitoylated and that palmitoylation is not essential for dimerization, trafficking, or biliary sterol secretion. Both G5 and G8 have short but highly conserved cytoplasmic tails. The functional roles of these C-terminal regions were examined using an in vivo functional assay.  相似文献   

19.
The major pathway for elimination of cholesterol in mammals is via secretion into bile. Biliary cholesterol secretion is mediated by the ATP-binding cassette (ABC) transporters ABCG5 (G5) and ABCG8 (G8) and is stimulated by cholesterol and by the non-cholesterol steroids cholate and diosgenin. To define the relationship between G5G8 expression and biliary cholesterol secretion, we measured G5 and G8 mRNA levels and biliary cholesterol concentrations in genetically manipulated mice expressing 0, 1, 2, 5, 10, or 16 copies of the two genes. Biliary cholesterol levels varied directly with G5G8 copy number and hepatic mRNA levels over a >16-fold range. Thus neither delivery of cholesterol to the transporter nor levels of cholesterol acceptors in bile were limiting under these conditions. In wild-type mice, cholate and diosgenin both increased biliary cholesterol concentrations 2-3-fold. The increase in biliary cholesterol content was dependent on expression of G5 and G8; neither steroid increased biliary cholesterol levels in G5G8-/- mice. Cholate treatment was associated with a farnesoid X receptor (FXR)-dependent increase in hepatic mRNA and protein levels of G5 and G8. In contrast to cholate, diosgenin treatment did not affect G5G8 expression. Diosgenin increased the expression of several pregnane X receptor (PXR) target genes and the choleretic effect of diosgenin was reduced by approximately 70% in PXR knock-out mice. Thus G5 and G8 are required to modulate biliary cholesterol secretion in response to cholate and diosgenin, but the choleretic effects of these two steroids are mediated by different mechanisms requiring FXR and PXR, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号