首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol homeostasis is maintained by coordinate regulation of cholesterol synthesis and its conversion to bile acids in the liver. The excretion of cholesterol from liver and intestine is regulated by ATP-binding cassette half-transporters ABCG5 and ABCG8. The genes for these two proteins are closely linked and divergently transcribed from a common intergenic promoter region. Here, we identified a binding site for hepatocyte nuclear factor 4alpha (HNF4alpha) in the ABCG5/ABCG8 intergenic promoter, through which HNF4alpha strongly activated the expression of a reporter gene in both directions. The HNF4alpha-responsive element is flanked by two conserved GATA boxes that were also required for stimulation by HNF4alpha. GATA4 and GATA6 bind to the GATA boxes, coexpression of GATA4 and HNF4alpha leads to a striking synergistic activation of both the ABCG5 and the ABCG8 promoters, and binding sites for HNF4alpha and GATA were essential for maximal synergism. We also show that HNF4alpha, GATA4, and GATA6 colocalize in the nuclei of HepG2 cells and that a physical interaction between HNF4alpha and GATA4 is critical for the synergistic response. This is the first demonstration that HNF4alpha acts synergistically with GATA factors to activate gene expression in a bidirectional fashion.  相似文献   

2.
The ATP-binding cassette transporters ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. To identify cis-regulatory elements of the two genes, we have cloned and analyzed twenty-three evolutionary conserved region (ECR) fragments using the CMV-luciferase reporter system in HepG2 cells. Two ECRs were found to be responsive to the Liver-X-Receptor (LXR). Through elaborate deletion studies, regions containing putative LXREs were identified and the binding of LXRα was demonstrated by EMSA and ChIP assay. When the LXREs were inserted upstream of the intergenic promoter, synergistic activation by LXRα/RXRα in combination with GATA4, HNF4α, and LRH-1, which had been shown to bind to the intergenic region, was observed. In conclusion, we have identified two LXREs in ABCG5/ABCG8 genes for the first time and propose that these LXREs, especially in the ECR20, play major roles in regulating these genes. [BMB Reports 2013; 46(6): 322-327]  相似文献   

3.
4.
Intestinal reclamation of bile salts is mediated in large part by the apical sodium-dependent bile acid transporter (ASBT). The bile acid responsiveness of ASBT is controversial. Bile acid feeding in mice results in decreased expression of ASBT protein and mRNA. Mouse but not rat ASBT promoter activity was repressed in Caco-2, but not IEC-6, cells by chenodeoxycholic acid. A potential liver receptor homologue-1 (LRH-1) cis-acting element was identified in the bile acid-responsive region of the mouse but not rat promoter. The mouse, but not rat, promoter was activated by LRH-1, and this correlated with nuclear protein binding to the mouse but not rat LRH-1 element. The short heterodimer partner diminished the activity of the mouse promoter and could partially offset its activation by LRH-1. Interconversion of the potential LRH-1 cis-elements between the mouse and rat ASBT promoters was associated with an interconversion of LRH-1 and bile acid responsiveness. LRH-1 protein was found in Caco-2 cells and mouse ileum, but not IEC-6 cells or rat ileum. Bile acid response was mediated by the farnesoid X receptor, as shown by the fact that overexpression of a dominant-negative farnesoid X-receptor eliminated the bile acid mediated down-regulation of ASBT. In addition, ASBT expression in farnesoid X receptor null mice was unresponsive to bile acid feeding. In summary cell line- and species-specific negative feedback regulation of ASBT by bile acids is mediated by farnesoid X receptor via small heterodimer partner-dependent repression of LRH-1 activation of the ASBT promoter.  相似文献   

5.
The excretion of sterols from the liver and intestine is regulated by the ABCG5 and ABCG8 transporters. To identify potential regulatory elements, 152 kb of the human ABCG5-ABCG8 gene cluster was sequenced and comparative genome analysis was performed. The two genes are oriented in a head-to-head configuration and are separated by a 374-bp intergenic region, which is highly conserved among several species. Using a reporter construct, the intergenic region was found to act as a bidirectional promoter. A conserved GATA site in the intergenic region was shown by site-directed mutagenesis to act as a repressor for the ABCG5 promoter. The intergenic region was also shown to be partially responsive to treatment by LXR agonists. In summary, several potential regulatory elements were found for the ABCG5 and ABCG8 genes, and the intergenic region was found to act as a bidirectional promoter.  相似文献   

6.
7.
The mechanisms responsible for bile acid regulation of mouse intestinal organic solute transporter alpha-beta (Ostalpha-Ostbeta) expression were investigated. Expression of Ostalpha-Ostbeta mRNA was increased in cecum and proximal colon of cholic acid-fed mice and in chenodeoxycholate-treated mouse CT26 colon adenocarcinoma cells. Sequence analysis revealed potential cis-acting elements for farnesoid X receptor (FXR) and liver receptor homolog-1 (LRH-1) in the mouse Ostalpha and Ostbeta promoters and reporter constructs containing Ostalpha and Ostbeta 5'-flanking sequences were positively regulated by bile acids. Expression of a dominant-negative FXR, reduction of FXR with interfering small RNA (siRNA), or mutation of the potential FXR elements decreased Ostalpha and Ostbeta promoter activity and abolished the induction by chenodeoxycolic acid. Negative regulation of the Ostalpha and Ostbeta promoters by bile acids was mediated through LRH-1 elements. Ostalpha and Ostbeta promoter activities were increased by coexpression of LRH-1 and decreased by coexpression of SHP. Mutation of the potential LRH-1 elements and siRNA-mediated reduction of LRH-1 expression decreased basal promoter activity. As predicted from the promoter analyses, ileal Ostalpha and Ostbeta mRNA expressions were increased in wild-type mice administered the FXR agonist GW4064 and decreased in FXR-null mice. Immunoblotting analysis revealed that Ostalpha and Ostbeta intestinal protein expressions correlated with mRNA expression. The mouse Ostalpha and Ostbeta promoters are unusual in that they contain functional FXR and LRH elements, which mediate, respectively, positive and negative feedback regulation by bile acids. Although the positive regulatory pathway appears to be dominant, this arrangement provides a mechanism to finely titrate Ostalpha-Ostbeta expression to the bile acid flux.  相似文献   

8.
9.
10.
11.
Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions.  相似文献   

12.
13.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

14.
15.
Liver X receptor (LXR) activates fatty acid synthase (FAS) gene expression through binding to a DR-4 element in the promoter. We show that a distinct nuclear receptor half-site 21 bases downstream of the DR-4 element is also critical for the response of FAS to LXR but is not involved in LXR binding to DNA. This half-site specifically binds liver receptor homologue-1 (LRH-1) in vitro and in vivo, and we show LRH-1 is required for maximal LXR responsiveness of the endogenous FAS gene as well as from promoter reporter constructs. We also demonstrate that LRH-1 stimulation of the FAS LXR response is blocked by the addition of small heterodimer partner (SHP) and that FAS mRNA is overexpressed in SHP knock-out animals, providing evidence that FAS is an in vivo target of SHP repression. Taken together, these findings identify the first direct lipogenic gene target of LRH-1/SHP repression and provide a mechanistic explanation for bile acid repression of FAS and lipogenesis recently reported by others.  相似文献   

16.
The orphan nuclear receptor liver receptor homolog 1 (LRH-1) has been reported to play an important role in bile acid biosynthesis and reverse cholesterol transport. Here, we show that LRH-1 is a key player in the control of the hepatic acute-phase response. Ectopic expression of LRH-1 with adenovirus resulted in strong inhibition of both interleukin-6 (IL-6)- and IL-1beta-stimulated haptoglobin, serum amyloid A, and fibrinogen beta gene expression in hepatocytes. Furthermore, induction of the hepatic inflammatory response was significantly exacerbated in HepG2 cells expressing short hairpin RNA targeting LRH-1 expression. Moreover, transient-transfection experiments and electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that LRH-1 regulates this cytokine-elicited inflammatory response by, at least in part, antagonizing the CCAAT/enhancer binding protein beta signaling pathway. Finally, we show, by using LRH-1 heterozygous mice, that LRH-1 is involved in the control of the inflammatory response at the hepatic level in vivo. Taken together, our results outline an unexpected role for LRH-1 in the modulation of the hepatic acute-phase response.  相似文献   

17.
Several of the ATP binding cassette (ABC) transporters have recently been shown to play important roles in reverse cholesterol transport (RCT) and prevention of atherosclerosis. In the liver, ABCG5 and ABCG8 have been proposed to efflux sterols into the bile for excretion. ABCG5 and ABCG8 also limit absorption of dietary cholesterol and plant sterols in the intestine. In macrophages, ABCA1 and ABCG1 mediate cholesterol removal from these cells to HDL. Many of these ABC transporters are regulated by the liver X receptor (LXR). We have previously shown that endotoxin (lipopolysaccharide) down-regulates LXR in rodent liver. In the present study, we examined the in vivo and in vitro regulation of these ABC transporters by endotoxin. We found that endotoxin significantly decreased mRNA levels of ABCG5 and ABCG8 in the liver, but not in the small intestine. When endotoxin or cytokines (tumor necrosis factor and interleukin-1) were incubated with J774 murine macrophages, the mRNA levels of ABCA1 were decreased. This effect was rapid and sustained, and was associated with a reduction in ABCA1 protein levels. Endotoxin and cytokines also decreased ABCG1 mRNA levels in J774 cells. Although LXR is a positive regulator of ABCA1 and ABCG1, we did not observe a reduction in protein levels of LXR or in binding of nuclear proteins to an LXR response element in J774 cells. The decrease in ABCG5 and ABCG8 levels in the liver as well as a reduction in ABCA1 and ABCG1 in macrophages during the host response to infection and inflammation coupled with other previously described changes in the RCT pathway may aggravate atherosclerosis.  相似文献   

18.
Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphati-dylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed −1620/−1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immuno-precipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号