首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the fire resistance conferred by bark of seven common tree species in north Australian tropical savannas. We estimated bark thermal conductance and examined the relative importance of bark thickness, density and moisture content for protecting the cambium from lethal fire temperatures. Eucalypt and non-eucalypt species were contrasted, including the fire-sensitive conifer Callitris intratropica. Cambial temperature responses to bark surface heating were measured using a modified wick-fire technique, which simulated a heat pulse comparable to surface fires of moderate intensity. Bark thickness was a better predictor of resistance to cambial injury from fires than either bark moisture or density, accounting for 68% of the deviance in maximum temperature of the cambium. The duration of heating required to kill the cambium of a tree (τc) was directly proportional to bark thickness squared. Although species did not differ significantly in their bark thermal conductance (k), the thinner barked eucalypts nevertheless achieved similar or only slightly lower levels of fire resistance than much thicker barked non-eucalypts. Bark thickness alone cannot account for the latter and we suggest that lower bark moisture content among the eucalypts also contributes to their apparent fire resistance. Unique eucalypt meristem anatomy and epicormic structures, combined with their bark traits, probably facilitate resprouting after fire and ensure the dominance of eucalypts in fire-prone savannas. This study emphasises the need to take into account both the thermal properties of bark and the mechanism of bud protection in characterising the resprouting ability of savanna trees.  相似文献   

2.
Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  相似文献   

3.
Bark damage resulting from elephant feeding is common in African savanna trees with subsequent interactions with fire, insects, and other pathogens often resulting in tree mortality. Yet, surprisingly little is known about how savanna trees respond to bark damage. We addressed this by investigating how the inner bark of marula (Sclerocarya birrea), a widespread tree species favoured by elephants, recovers after bark damage. We used a long‐term fire experiment in the Kruger National Park to measure bark recovery with and without fire. At 24 months post‐damage, mean wound closure was 98, 92, and 72%, respectively, in annual and biennial burns and fire‐exclusion treatments. Fire exclusion resulted in higher rates of ant colonization of bark wounds, and such ant colonization resulted in significantly lower bark recovery. We also investigated how ten common savanna tree species respond to bark damage and tested for relationships between bark damage, bark recovery, and bark traits while accounting for phylogeny. We found phylogenetic signal in bark dry matter content, bark N and bark P, but not in bark thickness. Bark recovery and damage was highest in species which had thick moist inner bark and low wood densities (Anacardiaceae), intermediate in species which had moderate inner bark thickness and wood densities (Fabaceae) and lowest in species which had thin inner bark and high wood densities (Combretaceae). Elephants prefer species with thick, moist inner bark, traits that also appear to result in faster recovery rates.  相似文献   

4.
Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire‐induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low‐intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high‐intensity, catastrophic fires during nondrought years.  相似文献   

5.
Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of 9 tropical cloud forest tree species coupled with numerical simulations using an optimization model. We find that fast‐growing trees have lower xylem safety margins than slow‐growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast‐growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose the growth ‐ xylem vulnerability trade‐off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that this trade‐off can emerge from the coordination between growth rates, wood density, and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth‐mortality trade‐off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy.  相似文献   

6.
Sclerocarya birrea ssp. caffra (marula), a typical savanna tree, is vulnerable to the effects of fire, herbivory and their combination. This paper investigated the relative importance of these agents of disturbance, at the level of the individual stem, by specifically focusing on the following questions: (i) What is the greatest cause of mortality in adult marula stems in conservation areas with both elephants and fire? (ii) Does fire interact with bark stripping to cause adult stem mortality and if so what is the dominant mechanism? (iii) At what stem diameter are marulas resistant to fire? Field surveys quantified the extent of damage in marula individuals in the Kruger National Park, South Africa, highlighting the high levels of extreme herbivory such as toppling (7%) and pollarding (8%), relative to bark stripping (only 6% with more than 50% of the circumference stripped). In addition to extreme herbivory, the progression from bark stripping through to invasion of the soft, exposed heartwood by wood borers, often facilitated by fire, through to toppling of the weakened stem after successive fires, appears to be the dominant mechanism by which fire interacts with herbivory to cause adult stem death. Bark stripping and fire manipulation experiments indicated that bark stripping failed to increase the vulnerability of stems to fire directly through transport tissue damage. However, the combination of bark stripping and fire reduced the ability of the stem to regrow bark, increasing the vulnerability of the exposed stem to boring insects and future fires. Fire manipulation experiments were used to identify the minimum stem diameter of resistance to fire. Marula resisted stem death when greater than 3.4 cm in basal diameter. This paper emphasizes the importance of both fire and herbivory in the development of woody plant population structure and by extension, the relative proportion of trees and grasses in savanna landscapes.  相似文献   

7.
Regeneration mechanisms of vegetation and the role of tree bark resistance to frequent fire were studied in savanna woodlands and grasslands in Gambella, Western Ethiopia. Data were collected from four sites, each with three replicate plots. The variation between sites in species composition and biomass correlated with the differences in fire intensity. Foliar cover was recorded for individual plant species regenerating by sprouting from older parts of plants that had survived fire or by seedlings; records were made during the dry season and at the beginning of the wet season. Data on bark thickness and tree diameters of 12 dominant tree species were also recorded. Both facultative and obligate sprouters significantly contributed to post‐fire recovery, comprising 98.5 % of total vegetation cover. The contribution of seedlings to cover and abundance immediately following fire was negligible, but seedling density increased in the beginning of the rainy season, 4 to 5 months after fire. The importance of the sprouting and seeding strategies varied between the different plant growth forms. The highest contribution to cover and frequency was made by the most abundant grass species, which reproduced in both ways. Facultative sprouters made up 67.3 % of the vegetation cover, out of which 54 % consisted of grasses. Broad‐leaved herbs and trees/shrubs regenerating mainly by sprouting made up 31.3 % of the vegetation cover. Adaptations to fire in tree species seemed to include the development of a thick bark, once the tree has passed seedling stages. Tree bark thickness and tree diameter at breast height were strongly correlated with the time taken for cambium to reach an assumed lethal temperature of 60°C when exposed to fire, which indicated that mature trees with thick barks might resist stronger fire better than, e.g., small or young trees and trees with thin bark. However, for a given bark thickness the cambium resistance to heat varied three‐fold among species. Hence, site differences in fire intensity seemed to influence the distribution of trees depending on their bark characteristics and resistance to fire.  相似文献   

8.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

9.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

10.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.  相似文献   

11.
12.
Fire is central to the ecology of Mediterranean‐type climate ecosystems, but little is known about the fire ecology of succulent plants therein. This study investigated the fire ecology of an arborescent succulent monocot, Kumara plicatilis (L.) G. D. Rowley (Asphodelaceae), a Cape fynbos endemic. Habitat suitability was assessed to determine whether the species tolerates or ‘avoids’ fire, and fire survival traits (bark thickness and tissue water content) were measured. The population size structure and density of three K. plicatilis populations were assessed after natural fires, and resprouting potential was investigated. Kumara plicatilis adopts a dual fire survival strategy, occupying rocky sites to ‘avoid’ fire and possessing morphological features that afford fire tolerance, e.g. well‐protected apical meristems and thick corky bark. Bark thickness of burned individuals in situ was similar to unburned plants, suggesting that K. plicatilis bark provides effective insulation against fire. Mortality rates were 64%, 40% and 11%, and decreased as rock cover at the population level increased. All three populations showed reduced plant density post‐fire, with greater density reductions associated with lower rock cover. Small plants appear most vulnerable to fire damage due to lower absolute bark thickness and plant heights within the flame zone. Kumara plicatilis is an apical sprouter, recovering after fire or mechanical stem damage by onward growth from surviving stem apices, rather than resprouting. Post‐fire population recovery therefore likely depends on inter‐fire recruitment.  相似文献   

13.
Increases in drought‐induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P50) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P50, along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P50 values ranging between ?4.03 and ?2.00 MPa with most species falling in a narrow range of resistance to embolism above ?2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P50. Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought‐induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species.  相似文献   

14.
Climate change scenarios predict increases in the frequency and duration of ENSO‐related droughts for parts of South‐East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan‐tropical review of recorded drought‐related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought‐vulnerability of trees in South‐East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large‐scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from −100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo‐ or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity.  相似文献   

15.
Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3-4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems.  相似文献   

16.
Survival and life expectancy are key demographic determinants of population dynamics. Using data collected in a field experiment monitored over 14 years in montane grassland of the Ukhahlamba‐Drakensberg Park, South Africa, we determined the effects of components of fire regime and plant structure on the survival and life expectancy of the tree Protea roupelliae subsp. roupelliae (Proteaceae). The field experiment comprised six plots (0.2–0.5 ha in area) from which the survival and life expectancies of 1567 juveniles (non‐reproductives) and 329 adults (reproductives) were estimated in response to differences in fire frequency, biennial seasonal fire, flame height, juvenile height, adult height, basal area and canopy vigour. Juvenile survival and life expectancies were highest when fires were excluded for 8 years. However, a fire after 12 years of fire exclusion and another fire 2 years later eliminated all juveniles. Over the same 14‐year period of biennial fires, juvenile survival was 5%. Juvenile survival and life expectancy were higher after biennial, winter fires than after annual, winter fires. Flame height had no effect on juvenile survival and life expectancy. Both survival and life expectancy of juveniles increased as plants got older and grew taller. Adult survival was unaffected by fire frequency, flame height or tree size, but the survival of adults in response to fire seasonality was inconclusive. Adults with low canopy vigour (<25%) were negatively affected by fire. Juvenile survival and life expectancy are critical bottlenecks in the demography of P. roupelliae. This species is neither a reseeder nor a resprouter. It avoids lethal fire damage by being restricted to rocky habitats with low fire intensities. Biennial winter fires least threaten the survival and life expectancy of P. roupelliae and impact least on its role in the summer feeding and breeding of Gurney's sugarbird.  相似文献   

17.
  • Several Cerrado tree species have traits and structures that protect from fires. The effectiveness of a trait depends on the fire regime, especially the frequency. We used Vochysia elliptica, a common Cerrado tree, as a model to test whether different fire frequencies alter crown architecture and flower, fruit and seed production.
  • We analysed the effect of fire on the production of inflorescences, fruits and seeds, as well as seed germination and tree architecture of 20 trees in each of three plots of a long‐term ecological experiment managed with different fire regimes: burned every 2 years (B), burned every 4 years (Q) in mid‐dry season and an area protected from fire (C).
  • We found a large negative effect of fire frequency on crown architecture and on flower and fruit production. Trees in C and Q had significantly more main branches and a larger crown area than trees in B. At its peak, a tree in C was expected to produce 2.4 times more inflorescences than Q, and 15.5 times more than B, with similar magnitudes for fruits. Sixty per cent of trees in B and 10% in Q produced no fruits.
  • The differences in architecture might explain the reduction in sexual reproduction due to a smaller physical space to produce flowers at the branch apices. Resource limitation due to plant investment to replace burned vegetative parts may also decrease sexual reproduction. Our results indicate potentially severe consequences of high fire frequencies for population dynamics and species persistence in Cerrado communities.
  相似文献   

18.
In tropical Africa, evidence of widely distributed genera transcending biomes or habitat boundaries has been reported. The evolutionary processes that allowed these lineages to disperse and adapt into new environments are far from being resolved. To better understand these processes, we propose an integrated approach, based on the eco‐physio‐morphological traits of two sister species with adjacent distributions along a rainfall gradient. We used wood anatomical traits, plant hydraulics (vulnerability to cavitation, wood volumetric water content, and hydraulic capacitance), and growth data from the natural habitat, in a common garden, to compare species with known phylogeny, very similar morphologically, but occupying contrasting habitats: Erythrophleum ivorense (wet forest) and Erythrophleum suaveolens (moist forest and forest gallery). We identified some slight differences in wood anatomical traits between the two species associated with strong differences in hydraulics, growth, and overall species distribution. The moist forest species, E. suaveolens, had narrower vessels and intervessel pits, and higher vessel cell‐wall reinforcement than E. ivorense. These traits allow a high resistance to cavitation and a continuous internal water supply of the xylem during water shortage, allowing a higher fitness during drought periods, but limiting growth. Our results confirm a trade‐off between drought tolerance and growth, controlled by subtle adaptations in wood traits, as a key mechanism leading to the niche partitioning between the two Erythrophleum species. The generality of this trade‐off and its importance in the diversification of the African tree flora remains to be tested. Our integrated eco‐physio‐morpho approach could be the way forward.  相似文献   

19.
Abstract Riparian habitats are highly important ecosystems for tropical biodiversity, and highly threatened ecosystems through changing disturbance regimes and weed invasion. An experimental study was conducted to assess the ecosystem impacts of fire regimes introduced for the removal of the exotic woody vine, Cryptostegia grandiflora, in tropical north‐eastern Australian woodlands. Experimental sites in subcatchments of the Burdekin River, northern Queensland, Australia, were subjected to combinations of early wet‐season and dry‐season fires, and single and repeated fires, with an unburnt control. Woody vegetation was sampled using permanent quadrats to record and monitor plants species, number and size‐class. Sampling was conducted pre‐fire in 1999 and post‐fire in 2002. All fire regimes were effective in reducing the number and biomass of C. grandiflora shrubs and vines. Few woodland or riparian species were found to be fire‐sensitive and community composition did not change markedly under any fire regime. The more intense dry‐season fires impacted the structure of non‐target vegetation, with large reductions in the number of sapling trees (<5 cm d.b.h.) and reductions in the largest tree size‐class and total tree basal area. Unexpectedly, medium‐sized canopy trees (10–30 cm d.b.h.) appear to have been significantly benefited by fires, with decreases in number of trees of this size‐class in the absence of fire. Although the presence of C. grandiflora as a vine in riparian forest canopies changed the nature and intensity of crown combustion patterns, this did not lead to the initiation of a self‐perpetuating weed–fire cycle, as invaders were unable to take advantage of gaps caused by fire. Low intensity, early wet‐season burning, or early dry‐season burning, is recommended for control of C. grandiflora in order to minimize the fire intensity and risk of the loss of large habitat trees in riparian habitats.  相似文献   

20.
The objective of this study was to compare the protective role of bark against fire for three selected indigenous and five exotic species in the Western Cape, South Africa. Bark thickness, compass direction, stem diameter at breast height, bark moisture content and relative height of the sample in the stem were tested for their effect on heat insulation capacity of bark. Trees were felled and heating experiments were conducted at 400 ºC on fresh billets with intact bark. Time to heat the cambium to lethal 60 ºC was determined. Statistical analysis based on correlation, multi-model inference and multiple regression revealed no significant influence of compass direction and diameter at breast height. Heat resistance was mainly determined by bark thickness, to a lesser degree by moisture content. In several species relative height at the stem modulated the bark thickness effect. Higher up the stem bark of the same thickness offered less protection against heat. Significant species-specific differences in heat resistance were apparent in the results, which could not be explained by bark thickness thus indicating further need for research in scrutinising these factors, which might help to explain the relative higher fire tolerance of certain species compared to others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号