首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a "second generation" of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.  相似文献   

2.
In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion.  相似文献   

3.
As a milestone breakthrough of stem cell and regenerative medicine in recent years,somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryonic stem cells.However,induced pluripotent stem(iPS) cells are prepared with a complicated protocol that results in a low reprogramming rate.To obtain differentiated target cells,iPS cells and embryonic stem cells still need to be induced using step-by-step procedures.The safety of induced target cells from iPS cells is currently a further concerning matter.More broadly conceived is lineage reprogramming that has been investigated since 1987.Adult stem cell plasticity,which triggered interest in stem cell research at the end of the last century,can also be included in the scope of lineage reprogramming.With the promotion of iPS cell research,lineage reprogramming is now considered as one of the most promising fields in regenerative medicine,will hopefully lead to customized,personalized therapeutic options for patients in the future.  相似文献   

4.
5.
6.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

7.
Jin Y 《Cell research》2007,17(9):744-745
Experimental evidence demonstrates that the ability of stem cells to self-renew and to differentiate into different types of mature cells depends on both their intrinsic genetic programs and external control from their microenvironment or niche. The concept of stem cell niche was first proposed by Schofield in 1978 to describe a microenvironment that supports stem cells in a mammalian hematopoietic system. Over the last 30 years, more stem cell niches have been identified in the mammalian system, including the hematopoietic stem cell niche in bone marrow, the epithelial stem cell niche in skin, the intestinal stem cell niche, the neural stem cell niche and the germ line stem cell niche in mice ). Recently, the concept of stem cell niche is further defined. The niche must have both anatomic and functional dimensions and may be composed of heterologous cell types, extracellular matrix, paracrine factors or non-protein metabolites . More recently, it was shown that disruption in the niche of hematopoietic stem cells leads to the development ofmyeloproliferative disease . It becomes obvious that a stem cell niche is not static, but dynamic, and can be modified or even created. Although stem cell niche has emerged as critical as stem cell autonomous functions for both our understanding of stem cell biology and the application of stem cells in medicine, a niche for human embryonic stem (hES) cells was not clearly shown until recently Bendall et al demonstrated that IGF and FGF cooperatively establish the regulatory stem cell niche of pluriootent human cells in vitro.[第一段]  相似文献   

8.
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide.Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue.Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology.Heart transplantation usually cannot be relied on,as there is a major discrepancy between the availability of donors and recipients.As a result,heart failure carries a poor prognosis and high mortality rate.As the heart lacks significant endogenous regeneration potential,novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues.This review will discuss past,present,and future clinical trials,factors that influence stem cell therapy outcomes as well as ethical and safety considerations.Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function.This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type,dosing,route of administration,patient parameters and other important variables that contribute to successful stem cell therapy.Nonetheless,the field of stem cell therapeutics continues to advance at an unprecedented pace.We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.  相似文献   

9.
10.
Lin T  Islam O  Heese K 《Cell research》2006,16(11):857-871
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB 1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.  相似文献   

11.
Organogenesis is regulated by a complex network of intrinsic cues, diffusible signals and cell/cell or cell/matrix interactions that drive the cells of a prospective organ to differentiate and collectively organize in three dimensions. Generating organs in vitro from embryonic stem (ES) cells may provide a simplified system to decipher how these processes are orchestrated in time and space within particular and between neighboring tissues. Recently, this field of stem cell research has also gained considerable interest for its potential applications in regenerative medicine. Among human pathologies for which stem cell-based therapy is foreseen as a promising therapeutic strategy are many retinal degenerative diseases, like retinitis pigmentosa and age-related macular degeneration. Over the last decade, progress has been made in producing ES-derived retinal cells in vitro, but engineering entire synthetic retinas was considered beyond reach. Recently however, major breakthroughs have been achieved with pioneer works describing the extraordinary self-organization of murine and human ES cells into a three dimensional structure highly resembling a retina. ES-derived retinal cells indeed assemble to form a cohesive neuroepithelial sheet that is endowed with the intrinsic capacity to recapitulate, outside an embryonic environment, the main steps of retinal morphogenesis as observed in vivo. This represents a tremendous advance that should help resolving fundamental questions related to retinogenesis. Here, we will discuss these studies, and the potential applications of such stem cell-based systems for regenerative medicine.  相似文献   

12.
Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic stem cells have rightfully attracted a large interest due to their proven capacity of differentiating into any cell type in the embryo in vivo. Tissue-specific stem ceils are however already in use in medical practice, and recently the first systematic medical trials involving human neural stem cell (NSC) therapy have been launched. There are yet many obstacles to overcome and procedures to improve. To ensure progress in the medical use of stem cells increased basic knowledge of the molecular mechanisms that govern stem cell characteristics is necessary. Here we provide a review of the literature on NSCs in various aspects of cell therapy, with the main focus on the potential of using biomaterials to control NSC characteristics, differentiation, and delivery. We summarize results from studies on the characteristics of endogenous and transplanted NSCs in rodent models of neurological and cancer diseases, and highlight recent advancements in polymer compatibility and applicability in regulating NSC state and fate. We suggest that the development of specially designed polymers, such as hydrogels, is a crucial issue to improve the outcome of stem cell therapy in the central nervous system.  相似文献   

13.
Stem cells are the core of tissue repair and regeneration,and a promising cell source for novel therapies.In recent years,research into stem cell therapies has been particularly exciting in China.The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine,such as treatments for sweat gland injury after burns,diabetes,and liver injury.High hopes have inspired numerous experimental and clinical trials.At the same time,government investment and policy support of research continues to increase markedly.However,numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes.  相似文献   

14.
Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs’ functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.  相似文献   

15.
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell(SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.  相似文献   

16.
It is still unclear whether the timing of intracoronary stem cell therapy affects the therapeutic response in patients with myocardial infarction.The natural course of healing the infarction and the presence of putative homing signals within the damaged myocardium appear to favor cell engraftment during the transendothelial passage in the early days after reperfusion.However,the adverse inflammatory environment,with its high oxidative stress,might be deleterious if cells are administered too early after reperfusion.Here we highlight several aspects of the timing of intracoronary stem cell therapy.Our results showed that transplantation of bone marrow mesenchymal stem cells at 2 4 weeks after myocardial infarction is more favorable for reduction of the scar area,inhibition of left ventricular remodeling,and recovery of heart function.Coronary injection of autologous bone marrow mesenchymal stem cells at 2 4 weeks after acute myocardial infarction is safe and does not increase the incidence of complications.  相似文献   

17.
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic forresearch. Embryonic stem cells(ESCs), induced pluripotent stem cells(i PSCs) and adipose derived mesenchymal stem cells(ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. i PSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since i PSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them.  相似文献   

18.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.  相似文献   

19.
Tsung HC  Du ZW  Rui R  Li XL  Bao LP  Wu J  Bao SM  Yao Z 《Cell research》2003,13(3):195-202
As a part of a basic research project on Xeno-transplantion, we have been engaged in the derivation of embryonic stem cell lines from Chinese mini swine. Here, we reported for the first time the establishment of two porcine EG cell lines (BPEG1 and BPEG2) from primordial germ cells of genital ridges of a 28 anda 27 d embryos respectively. Their pluripotent nature has been identified by colony morphology, marker characterization as well as by in vitro and in vivo differentiation. These porcine EG cells are potentially useful for further basic studies.  相似文献   

20.
In 1975, Holliday and Pugh as well as Riggs independently hypothesized that DNA methylation in eukaryotes could act as a hereditary regulation mechanism that influences gene expression and cell differentiation. Interest in the study of epigenetic processes has been inspired by their reversibility as well as their potentially preventable or treatable consequences. Recently, we have begun to understand that the features of DNA methylation are not the same for all cells.Major differences have been found between differentiated cells and stem cells.Methylation influences various pathologies, and it is very important to improve the understanding of the pathogenic mechanisms. Epigenetic modifications may take place throughout life and have been related to cancer, brain aging, memory disturbances, changes in synaptic plasticity, and neurodegenerative diseases,such as Parkinson's disease and Huntington's disease. DNA methylation also has a very important role in tumor biology. Many oncogenes are activated by mutations in carcinogenesis. However, many genes with tumor-suppressor functions are "silenced" by the methylation of CpG sites in some of their regions.Moreover, the role of epigenetic alterations has been demonstrated in neurological diseases. In neuronal precursors, many genes associated with development and differentiation are silenced by CpG methylation. In addition,recent studies show that DNA methylation can also influence diseases that do not appear to be related to the environment, such as IgA nephropathy, thus affecting,the expression of some genes involved in the T-cell receptor signaling. In conclusion, DNA methylation provides a whole series of fundamental information for the cell to regulate gene expression, including how and when the genes are read, and it does not depend on the DNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号