首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.  相似文献   

5.
6.
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.  相似文献   

7.
《Epigenetics》2013,8(12):1641-1647
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.  相似文献   

8.
DNA methylation of nuclear receptor genes--possible role in malignancy   总被引:2,自引:0,他引:2  
The members of the nuclear receptor superfamily are known to mediate a wide array of basic biological processes, such as regulation of cell growth and differentiation, and induction of apoptosis. In several human malignancies, this central control function of nuclear receptors is disturbed, which seems to play an important role in tumor development and progression. Many nuclear receptor genes have been reported to be downregulated in malignancies; however, only a few mutations, gene arrangements, deletions or similar genetic changes have been shown to occur in these tumors.During the last decade, increasing attention has been directed towards epigenetic mechanisms of gene regulation such as DNA methylation. Many nuclear receptor genes can be silenced through aberrant methylation in tumors; epigenetic silencing, therefore, represents an additional mechanism that modifies expression of key genes during carcinogenesis.This review will give insights into the role of DNA methylation in the silencing of nuclear receptor genes and its involvement in human malignancies.  相似文献   

9.
DNA methylation and cancer   总被引:33,自引:0,他引:33  
  相似文献   

10.
11.
12.
13.
14.
Cytosine methylation at CpG dinucleotides is a critical epigenetic modification of mammalian genomes. CpG binding protein (CGBP) exhibits a unique DNA-binding specificity for unmethylated CpG motifs and is essential for early murine development. Embryonic stem cell lines deficient for CGBP were generated to further examine CGBP function. CGBP(-)(/)(-) cells are viable but show an increased rate of apoptosis and are unable to achieve in vitro differentiation following removal of leukemia inhibitory factor from the growth media. Instead, CGBP(-)(/)(-) embryonic stem cells remain undifferentiated as revealed by persistent expression of the pluripotent markers Oct4 and alkaline phosphatase. CGBP(-)(/)(-) cells exhibit a 60 to 80% decrease in global cytosine methylation, including hypo-methylation of repetitive elements, single-copy genes, and imprinted genes. Total DNA methyltransferase activity is reduced by 30 to 60% in CGBP(-)(/)(-) cells, and expression of the maintenance DNA methyltransferase 1 protein is similarly reduced. However, de novo DNA methyltransferase activity is normal. Nearly all aspects of the pleiotropic CGBP(-)(/)(-) phenotype are rescued by introduction of a CGBP expression vector. Hence, CGBP is essential for normal epigenetic modification of the genome by cytosine methylation and for cellular differentiation, consistent with the requirement for CGBP during early mammalian development.  相似文献   

15.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

16.
Epigenetic alternations in genomic DNA encompass cytosine methylation in cytosine and guanine (CpG) dinucleotide islands, which are usually extended in the promoter and first exon of genes. The DNA methylation is carried out by DNA methyltransferases (DNMT) and it serves as an epigenetic method of gene expression modulation. The epigenetic alternations in genomic DNA have been implicated in the development of malignant and autoimmune diseases. The epigenetic aberration in regulatory DNA sequences may also be responsible for the emergence of changes in the immune system in patients with systemic lupus erythematosus (SLE). The agents 5-azacytidine (azacitidine) and 5-aza-2'-deoxycytidine (decitabine) belong to inhibitors of methyltransferase. These compounds affect the methylation level of promoter sequences and cause phenotypic changes in peripheral blood mononuclear cells (PBMC), which are similar to those observed in PBMC of SLE patients. The lack of methylcytosine in CpG dinucleotides may be responsible for the antigenic properties of microbial DNA. The presence of low-apoptotic methylated DNA fragments has been identified in plasma of SLE patients. These DNA fragments exhibit antigenic properties and may elicit the humoral response responsible for the flare of SLE. The low methylation of CpG residues in the regulatory sequences may also contribute to the elevated expression of human endogenous retroviruses (HERVs) in PBMC of SLE patients. The HERV components exhibit a profound similarity with nuclear antigens and may be responsible for the enhancement of the production of anti-antinuclear antibodies (ANA). Recent advances in the investigation of epigenetic DNA changes have formed the basis of improved understanding of etiopathogenesis of SLE, which may thereby facilitate improvement in therapeutic principles of this disease.  相似文献   

17.
18.
精子发生(spermatogenesis)是一个高度特化的细胞复杂分化过程,其中DNA二核苷酸CpG甲基化变化与基因转录激活、染色质改构以及遗传印记相关,并且该甲基化与基因表达之间的关系是非直接的,其可通过染色质结构的改变或DNA与蛋白质的相互作用来介导。本文着重介绍精子发生过程中DNA甲基化及其跨代遗传风险、DNA甲基转移酶的调控机制以及DNA甲基化与男性不育之间的关系等,为不育症的防治、精子表观遗传质量评价以及降低辅助生殖技术后代表观遗传疾病风险等提供基础资料。  相似文献   

19.
In eukaryotes, the epigenetic mark DNA methylation is found exclusively at cytosine residues in the CpG islands of genes, transposons and intergenic DNA. Among functional roles, DNA methylation is essential for mammalian embryonic development, and is classically thought to function by stably silencing promoter activity. However, until recently, understanding of the distribution of cytosine methylation in the whole genome - and hence, identification of its targets - was very limited. High-throughput methodologies, including methylated DNA immunoprecipitation, have recently revealed genome-wide mapping of DNA methylation, and provided new and unexpected data. Clearly DNA methylation is selectively associated with some key promoters- and is not a prerequisite for promoter inactivation, since strong CpG island promoters are mostly unmethylated, even when inactive. Most germline-specific genes are methylated and permanently silenced in somatic cells, suggesting a role of this mark in maintaining somatic cellular identity. These large scale studies will also help understanding the deregulation of DNA methylation associated with cancer, among which unmethylation of germinal cells genes, and recent observtion of large hypomethylated regions in tumoral specimens. The next challenge will be to understand if these methylation changes occur randomly, or more likely are specified by oncogenes or linked to environmental pressure.  相似文献   

20.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号