首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高温胁迫影响香菇的品质和产量。以香菇Lentinula edodes热敏感菌株YS3357为试验材料,研究了外源生长素及其类似物对香菇菌丝体高温胁迫下氧化损伤的缓解效应。结果表明,外源添加IAA、NAA和2,4-D能够显著提高热敏感菌株YS3357的耐热能力。外源生长素类物质在一定程度上可以抑制超氧阴离子(O 2-)产生,降低脂氧合酶(LOX)活性和硫代巴比妥酸反应物(TBARS)含量,提高超氧化物歧化酶(SOD)活性,可能与缓解香菇菌丝体由于高温胁迫所引起的氧化损伤有关。本研究重点探讨外源添加生长素及其类似物对热胁迫下香菇热敏感菌株YS3357菌丝生长、生理特性及抗氧化胁迫能力的影响,为进一步阐明食用菌抗高温胁迫机制奠定了一定的理论基础。  相似文献   

2.
Dune reed (DR) is the more tolerant ecotype of reed to environmental stresses than swamp reed (SR). Under osmotic stress mediated by polyethylene glycol (PEG-6000), the suspension culture of SR showed higher ion leakage, and more oxidative damage to the membrane lipids and proteins was observed compared with the relatively tolerant DR suspension culture. Treatment with sodium nitroprusside (SNP) can significantly alleviated PEG-induced ion leakage, thiobarbituric acid reactive substances (TBARS) and carbonyl contents increase in SR suspension culture. The levels of H(2)O(2) and O(2)(-) were reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were increased in both suspension cultures in the presence of SNP under osmotic stress, but lipoxygenase (LOX) activity was inhibited. 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific Nitric oxide (NO) scavenger, blocked the SNP-mediated protection. Depletion of endogenous NO with PTIO strongly enhanced oxidative damage in DR compared with that of PEG treatment alone, whereas had no effect on SR. Moreover, NO production increased significantly in DR while kept stable in SR under osmotic stress. Taken together, these results suggest that PEG induced NO release in DR but not SR can effectively protect against oxidative damage and confer an increased tolerance to osmotic stress in DR suspension culture.  相似文献   

3.
为了探索外源一氧化氮(NO)提高食用菌菌丝体耐热性的生化途径,以白灵侧耳Pleurotus eryngii var. tuoliensis菌株CCMSSC 00489为材料,通过测定高温胁迫下外源添加硝普钠(sodium nitroprusside,SNP,NO供体)后,菌丝体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)和过氧化物酶(POD)等4个抗氧化酶活性的变化,研究外源NO在高温胁迫响应中对抗氧化酶的影响。试验表明,高温胁迫致使菌丝体内TBARS含量升高,膜脂过氧化加剧。在正常温度培养(CK)下,外源添加SNP无显著缓解膜脂过氧化的效果,而高温胁迫条件下缓解效果显著,高温胁迫6h和12h,TBARS含量较对照(未添加)分别下降31.5%和25%。研究表明,抗氧化酶类对外源NO的响应不同。在有外源添加SNP的高温胁迫条件下,菌丝体内的SOD、CAT和GR活性随处理时间的延长而显著增强,在处理72h达到最高,分别是对照(0h)的1.73、7.29和4.95倍。其中CAT是高温胁迫响应的主要抗氧化酶类,其活力可以mmol/L·min-1·mg-1 of protein计量,而其他种类的活力均仅以μmol/L·min-1·mg-1 of protein计量。在试验条件下,这些抗氧化酶类活性的提高与TBARS含量的降低相呼应,表明外源NO通过提高SOD、CAT、GR的活性降低高温胁迫下的活性氧水平,缓解其氧化损伤,提高菌丝体耐热性。POD活性在外源添加SNP的高温胁迫条件下显著降低。  相似文献   

4.
The effects of nitric oxide (NO) in protecting maize (Zea mays) leaves against iron deficiency-induced oxidative stress were investigated. The increased contents of hydrogen peroxide (H(2)O(2)) and superoxide (O(2)(-)*) due to iron deficiency suggested oxidative stress. The increased contents of thiobarbituric acid-reacting substances (TBARS) and the decreased contents of protein-bound thiol (PT) and non-protein-bound thiol (NPT) indicated iron deficiency-induced oxidative damage on proteins and lipids. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, partially reversed iron deficiency-induced retardation of plant growth as well as chlorosis. Reduced contents of H(2)O(2), O(2)(-)*, TBARS and increased contents of PT and NPT also indicated that NO alleviated iron deficiency-induced oxidative damage. The activities of SOD and GR decreased sharply while the activities of CAT, POD and APX increased under SNP treatment. Our data suggest that NO can protect maize plants from iron deficiency-induced oxidative stress by reacting with ROS directly or by changing activities of ROS-scavenging enzymes.  相似文献   

5.
Effect of sodium nitroprusside (SNP), a donor of nitric oxide (NO) was examined in two wheat (Triticum aestivum L.) cultivars, C 306 (heat tolerant) and PBW 550 (comparatively heat susceptible) to study the extent of oxidative injury and activities of antioxidant enzyme in relation to high temperature (HT) stress. HT stress resulted in a marked decrease in membrane thermostability (MTS) and 2, 3, 5-triphenyl tetrazolium chloride (TTC) cell viability whereas content of lipid peroxide increased in both the cultivars. The tolerant cultivar C 306 registered less damage to cellular membranes compared to PBW 550 under HT stress. Activities of antioxidant enzymes viz, superoxide dismutase, catalase, ascorbate peroxidase, guaicol peroxidase and glutathione reductase increased with HT in both the cultivars. Following treatment with SNP, activities of all antioxidant enzymes further increased in correspondence with an increase in MTS and TTC. Apparently, lipid peroxide content was reduced by SNP more in shoots of heat tolerant cultivar C 306 indicating better protection over roots under HT stress. The up-regulation of the antioxidant system by NO possibly contributed to better tolerance against HT induced oxidative damage in wheat.  相似文献   

6.
Liu Y  Wu R  Wan Q  Xie G  Bi Y 《Plant & cell physiology》2007,48(3):511-522
The pivotal role of glucose-6-phosphate dehydrogenase (G-6-PDH)-mediated nitric oxide (NO) production in the tolerance to oxidative stress induced by 100 mM NaCl in red kidney bean (Phaseolus vulgaris) roots was investigated. The results show that the G-6-PDH activity was enhanced rapidly in the presence of NaCl and reached a maximum at 100 mM. Western blot analysis indicated that the increase of G-6-PDH activity in the red kidney bean roots under 100 mM NaCl was mainly due to the increased content of the G-6-PDH protein. NO production and nitrate reductase (NR) activity were also induced by 100 mM NaCl. The NO production was reduced by NaN(3) (an NR inhibitor), but not affected by N(omega)-nitro-L-arginine (L-NNA) (an NOS inhibitor). Application of 2.5 mM Na(3)PO(4), an inhibitor of G-6-PDH, blocked the increase of G-6-PDH and NR activity, as well as NO production in red kidney bean roots under 100 mM NaCl. The activities of antioxidant enzymes in red kidney bean roots increased in the presence of 100 mM NaCl or sodium nitroprusside (SNP), an NO donor. The increased activities of all antioxidant enzymes tested at 100 mM NaCl were completely inhibited by 2.5 mM Na(3)PO(4). Based on these results, we conclude that G-6-PDH plays a pivotal role in NR-dependent NO production, and in establishing tolerance of red kidney bean roots to salt stress.  相似文献   

7.
High temperature is an important environmental factor that affects the growth and development of most edible fungi, however, the mechanism(s) for resistance to high temperature remains elusive. Nitric oxide is known to be able to effectively alleviate oxidative damage and plays an important role in the regulation of trehalose accumulation during heat stress in mycelia of Pleurotus eryngii var. tuoliensis. In this paper, we investigated whether heat stress can activate apoptosis-like cell death in mycelia of Pleurotus. Two Pleurotus species were used to detect morphological features characteristic of apoptosis including nuclear condensation, reactive oxygen species accumulation, and DNA fragmentation when exposed to heat stress (42 °C). The results showed that these classical apoptosis markers were apparent in Pleurotus strains after heat treatment. The heat-induced apoptosis-like cell death in Pleurotus was further probed using oligomycin and N-acetylcysteine, both of which were shown to block processes leading to apoptosis. This is the first report that apoptosis-like cell death occurs in Pleurotus species as a result of abiotic stress, and that this process can be inhibited with chemicals that block mitochondrial-induced apoptotic pathways and/or with ROS-scavenging compounds.  相似文献   

8.
抗氧化酶和热激蛋白是双孢蘑菇Agaricus bisporus抵御逆境胁迫的重要蛋白,高温胁迫下菌丝会通过二者基因的差异表达来减少对自身的损伤。通过对双孢蘑菇菌丝进行40℃热胁迫处理0-120min后发现,随着热胁迫时间延长,菌丝生长速度降低、气生菌丝增多和菌丝分叉明显。转录组分析抗氧化酶和热激蛋白基因差异表达发现,在热胁迫30-60min时抗氧化酶基因gpxppo3cat3与热激蛋白基因hsphsp70-1和hsp70-17上调表达明显,而在90-120min时抗氧化酶基因ppo1ppo2cat2与热激蛋白基因hsp16hsp70-14、hsp70-3和hsp70-16上调表达明显。跟踪抗氧化酶活性发现,热胁迫能激活过氧化氢酶(CAT)和过氧化物酶(POD),使酶活性提高2-3倍;同时热胁迫降低了超氧化物歧化酶(SOD)酶活性,而对多酚氧化酶(PPO)影响不明显。此外,研究还发现热胁迫能使双孢蘑菇积累更多的超氧阴离子氧化自由基(O 2-),从而对菌丝造成损伤。因此,双孢蘑菇在热胁迫过程中可以通过启动不同的抗氧化酶和热激蛋白基因表达来抵御高温胁迫对菌丝造成的损伤,其中CAT和POD可能起到主要清除氧化自由基的作用,对双孢蘑菇耐高温基因的初步研究为选育耐高温品种奠定基础。  相似文献   

9.
本研究以双孢蘑菇Agaricus bisporus工厂化菌株A15和筛选得到的耐高温菌株A15-TH为研究对象,比较了高温胁迫对两个菌株菌丝生长的影响,并从氧化损伤修复及基础碳代谢-糖酵解途径两个角度探索双孢蘑菇对高温胁迫的响应及耐热机理。高温胁迫下,对照菌株A15的菌丝生长速度降低,菌丝分叉增加;而耐高温菌株A15-TH菌丝生长速度高于A15,菌丝形态优于对照菌株,表现出对高温具有一定的耐受性。对两个菌株高温胁迫下氧化损伤及抗氧化酶系统进行研究发现,高温胁迫30-90min导致对照菌株A15的三磷酸腺苷(ATP)含量下降54.4%-59.6%,线粒体复合物I、II、III活性升高,超氧阴离子(O2-)含量增加了34.9%-71.3%;此外高温胁迫降低了超氧化物歧化酶(SOD)的活性,影响了O2-的清除效率。耐高温菌株在受到高温胁迫后的氧化损伤及氧化修复效果与对照菌株不同,一方面体现在正常状态下维持较低的细胞能量代谢和较高的ROS合成量;另一方面抗氧化系统中sod1sod2cat1与对照菌株相比有不同程度的上调,SOD和过氧化氢酶(CAT)活性增强,可以更有效地清除过量的活性氧,减轻高温对菌丝的氧化损伤。尤其在高温胁迫120min时,A15的线粒体功能及抗氧化系统受到严重损伤,线粒体复合物I、II、III活性和CAT活性大幅度下降,但是A15-TH线粒体复合体I、III活性分别增加至正常状态下的1.4倍和8.9倍,CAT活性比对照菌株高128%,维持了正常的线粒体功能及对活性氧的有效清除。进一步研究发现高温胁迫下,双孢蘑菇菌丝的己糖激酶和丙酮酸激酶活性增加,糖酵解途径加快;耐高温菌株A15-TH在正常状态下和高温胁迫下,己糖激酶和丙酮酸激酶的活性均高于对照菌株A15,具有更活跃的碳代谢。  相似文献   

10.
The role of ABA in brassinosteroid (BR)-induced stress tolerance and the relationship between BR, nitric oxide (NO) and ABA under water stress induced by polyethylene glycol (PEG) were investigated in leaves of maize (Zea mays) plants. Water stress led to oxidative damage. Pre-treatment with the BR biosynthetic inhibitor brassinazole (Brz) aggravated the oxidative damage induced by PEG treatment, which was alleviated by the application of BR or ABA. Pre-treatment with the ABA biosynthetic inhibitor fluridone also aggravated the oxidative damage induced by PEG treatment; however, this was barely alleviated by the application of BR. BR treatment increased the content of ABA and up-regulated the expression of the ABA biosynthetic gene vp14 in maize leaves, which was blocked by pre-treatments with the NO scavenger cPTIO (2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and the nitric oxide synthase inhibitor l-NAME (N(G)-nitro-l-arginine methyl ester. Moreover, BR treatment induced increases in the generation of NO in mesophyll cells of maize leaves, and treatment with the NO donor sodium nitroprusside (SNP) up-regulated the content of ABA and the expression of vp14 in maize leaves. Our results suggest that BR-induced NO production and NO-activated ABA biosynthesis are important mechanisms for BR-enhanced water stress tolerance in leaves of maize plants.  相似文献   

11.
The effect of exogenous applied nitric oxide on photosynthesis under heat stress was investigated in rice seedlings. High temperature resulted in significant reductions of the net photosynthetic rate (P N) due to non-stomatal components. Application of nitric oxide donors, sodium nitroprusside (SNP) or S-nitrosoglutathione (GSNO), dramatically alleviated the decrease of P N induced by high temperature. Chlorophyll fluorescence measurement revealed that high temperature caused significant increase of the initial fluorescence (F o) and non-photochemical quenching (NPQ) whereas remarkable decrease of the maximal fluorescence (F m), the maximal efficiency of PSII photochemistry (F v/F m), the actual PSII efficiency (ΦPSII), and photochemical quenching (q p). In the presence of SNP or GSNO pretreatment, the increase of F o and decrease of F m, F v/F m, ΦPSII and q p were markedly mitigated, but NPQ was further elevated. Moreover, with SNP or GSNO pretreatment, H2O2 accumulation and electrolyte leakage induced by heat treatment were significantly reduced, whereas zeaxanthin content and carotenoid content relative to chlorophyll were elevated. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, arrested NO donors mediated effects. These results suggest that NO can effectively protect photosynthesis from damage induced by heat stress. The activation effect of NO on photosynthesis may be mediated by acting as ROS scavenging, or/and alleviating oxidative stress via maintaining higher carotenoid content relative to chlorophyll or/and enhancing thermal dissipation of excess energy through keeping higher level of zeaxanthin content under heat stress.  相似文献   

12.
Mitochondria are subcellular organelles with an essentially oxidative type of metabolism. The production of reactive oxygen species (ROS) in it increases under stress conditions and causes oxidative damage. In the present study, effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on both the ROS metabolism in mitochondria and functions of plasma membrane (PM) and tonoplast were studied in cucumber seedlings treated with 100mM NaCl. NaCl treatment induced significant accumulation of H(2)O(2) and led to serious lipid peroxidation in cucumber mitochondria, and the application of 50muM SNP stimulated ROS-scavenging enzymes and reduced accumulation of H(2)O(2) in mitochondria of cucumber roots induced by NaCl. As a result, lipid peroxidation of mitochondria decreased. Further investigation showed that application of SNP alleviated the inhibition of H(+)-ATPase and H(+)-PPase in PM and/or tonoplast by NaCl. While application of sodium ferrocyanide (an analog of SNP that does not release NO) did not show the effect of SNP, furthermore, the effects of SNP were reverted by addition of hemoglobin (a NO scavenger).  相似文献   

13.
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.  相似文献   

14.
In the present study, we used suspension cultured cells from Chorispora bungeana Fisch. and C.A. Mey to investigate whether nitric oxide (NO) is involved in the signaling pathway of chilling adaptive responses. Low temperatures at 4 °C or 0 °C induced ion leakage, lipid peroxidation and cell viability suppression, which were dramatically alleviated by exogenous application of NO donor sodium nitroprusside (SNP). The levels of reactive oxygen species (ROS) were obviously reduced, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) and the contents of ascorbic acid (AsA) and reduced glutathione (GSH) increased evidently in the presence of SNP under chilling stress. In addition, under low temperature conditions, treatment with NO scavenger PTIO or mammalian NO synthase (NOS) inhibitor l-NAME remarkably aggravated oxidative damage in the suspension cultures compared with that of chilling treatment alone. Moreover, measurements of NOS activity and NO production showed that both NOS activity and endogenous NO content increased markedly under chilling stress. The accumulation of NO was inhibited by l-NAME in chilling-treated cultures, indicating that most NO production under chilling may be generated from NOS-like activity. Collectively, these results suggest that chilling-induced NO accumulation can effectively protect against oxidative injury and that NOS like activity-dependent NO production might act as an antioxidant directly scavengering ROS or operate as a signal activating antioxidant defense under chilling stress, thus conferring an increased tolerance to chilling in C. bungeana suspension cultures.  相似文献   

15.
Antrodan, a protein-bound polysaccharide isolated from Antrodia cinnamomea mycelia, was demonstrated to exhibit significant anti-inflammatory bioactivity in vitro. However, its role in hepatic injury in vivo still remains unclear. We hypothesized that antrodan may have beneficial hepatoprotective effects. To verify this, a lipopolysaccharide (LPS)-Sprague-Dawley rat model was used. Antrodan protected against liver damage by suppressing LPS-stimulated serum glutamine-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), interleukin (IL)-6, hepatic thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), inducible NO synthase (iNOS) and nuclear factor (NF)-κB, and by effectively alleviating the downregulated hepatic superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px). Hematoxylin-eosin staining revealed that antrodan at a dosage of 40 mg/kg was able to alleviate LPS-induced liver damage to a normal status. In addition, we identified the partial main architectural backbone of antrodan to have a 1→3 linear β-glycosidic backbone of mannan linked by β-1→3 glucosidic branches. Conclusively, antrodan can potentially ameliorate liver damage in vivo by suppressing oxidative stress induced by LPS.  相似文献   

16.
Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic homeostasis.  相似文献   

17.
Salicylic acid (SA) and nitric oxide (NO) are reported to alleviate the damaging effects of stress in plants rather similarly when applied at appropriate low concentrations. An experiment was therefore conducted to study the impact of SA, sodium nitroprusside (SNP; as NO donor), and methylene blue (MB; as a guanylate cyclase inhibitor) on wheat seedling performance under osmotic stress. Osmotic stress significantly reduced shoot fresh weight (SFW), chlorophyll contents (Chla, Chlb, total Chl), and membrane stability index (MSI) and also increased malondialdehyde (MDA) level, lipoxygenase (LOX) activity, and hydrogen peroxide production. Moreover, enzymatic antioxidant activities including superoxide dismutase, guaiacol peroxidase, and glutathione reductase activity were enhanced under osmotic stress. On the contrary, SA or SNP pretreatment reduced the damaging effects of osmotic stress by further enhancing the antioxidant activities that led to increased SFW, Chl, and MSI and reduced MDA level and LOX activity. However, pretreatment of plants with MB reversed or reduced the protective effects of SA and SNP suggesting that the protective effects were likely attributed to NO signaling. Therefore, NO may act as downstream of SA signaling in reduction of induced oxidative damage in wheat seedlings.  相似文献   

18.
Heat Stress in Wheat during Reproductive and Grain-Filling Phases   总被引:4,自引:0,他引:4  
Ambient temperatures have increased since the beginning of the century and are predicted to continue rising under climate change. Such increases in temperature can cause heat stress: a severe threat to wheat production in many countries, particularly when it occurs during reproductive and grain-filling phases. Heat stress reduces plant photosynthetic capacity through metabolic limitations and oxidative damage to chloroplasts, with concomitant reductions in dry matter accumulation and grain yield. Genotypes expressing heat shock proteins are better able to withstand heat stress as they protect proteins from heat-induced damage. Heat tolerance can be improved by selecting and developing wheat genotypes with heat resistance. Wheat pre-breeding and breeding may be based on secondary traits like membrane stability, photosynthetic rate and grain weight under heat stress. Nonetheless, improvement in grain yield under heat stress implies selecting genotypes for grain size and rate of grain filling. Integrating physiological and biotechnological tools with conventional breeding techniques will help to develop wheat varieties with better grain yield under heat stress during reproductive and grain-filling phases. This review discusses the impact of heat stress during reproductive and grain-filling stages of wheat on grain yield and suggests strategies to improve heat stress tolerance in wheat.  相似文献   

19.
Aluminum (Al) toxicity promotes oxidative damage in plants, while nitric oxide (NO) may exert a beneficial effect on Al toxicity condition in soybean. Pretreatment with NO donor sodium nitroprusside (SNP) before soybean exposure to Al significantly reduced Al accumulation and MDA induction in the root apex. Pretreatment with SNP also increased the relative root elongation, chlorophyll content, and activity of the protective enzyme peroxidase compared to Al treatment alone. These results show the effect of exogenously applied NO as a protector against oxidative stress induced by Al. Moreover, the ameliorating effect can be reversed by the addition of NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) in the presence of Al.  相似文献   

20.
Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号