首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
2.

Background

The human liver fluke, Opisthorchis viverrini, is designated as a group 1 carcinogen, and is the major risk factor for cholangiocarcinoma in endemic countries throughout Southeast Asia. Proteins in the excretory-secretory products and tegumental surface membranes of the fluke have been proposed to play pivotal roles in parasite survival in the host, and subsequent pathogenesis. These macromolecules are therefore valid targets for the development of vaccines and new drugs to control the infection. Tetraspanins (TSP) are prominent components of the tegument of blood flukes where they are essential for tegument formation, are directly exposed to the immune system, and are major targets for a schistosomiasis vaccine. We propose that similar molecules in the surface membranes of O. viverrini are integral to tegument biogenesis and will be efficacious vaccine antigens.

Methodology/Principal Findings

The cDNA sequence encoding O. viverrini tetraspanin-1 (Ov-TSP-1) was identified and cloned. The Ov-tsp-1gene was isolated from a cDNA library. Ov-tsp-1 mRNA was expressed most highly in metacercariae and eggs, and to a lesser extent in juvenile and adult worms. Immunolocalization with adult flukes confirmed that Ov-TSP-1 was expressed in the tegument and eggs in utero. Western blot analysis of rOv-TSP-1 probed with sera from O. viverrini-infected humans and hamsters indicated that both hosts raise antibody responses against the native TSP. Using RNA interference we silenced the expression level of Ov-tsp-1 mRNA in adult flukes by up to 72% by 10 days after delivery of dsRNA. Ultrastructural morphology of adult worms treated with Ov-tsp-1 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls.

Conclusions/Significance

This is the first report of a tetraspanin from the tegument of a liver fluke. Our data imply that tetraspanins play important structural roles in the development of the tegument in the adult fluke. Potential uses of O. viverrini tetraspanins as novel interventions are discussed.  相似文献   

3.

Background

The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite.

Methodology/Principal Findings

In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5–32% reduction in the worm burden, 32.9–43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis.

Conclusions/Significance

Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process.  相似文献   

4.
Schistosomiasis is an important parasitic disease, with about 240 million people infected worldwide. Humans and animals can be infected, imposing an enormous social and economic burden. The only drug available for chemotherapy, praziquantel, does not control reinfections, and an efficient vaccine for prophylaxis is still missing. However, the tegumental protein Sm29 of Schistosoma mansoni was shown to be a promising antigen to compose an anti-schistosomiasis vaccine. Though, recombinant Sm29 is expressed in Escherichia coli as insoluble inclusion bodies requiring an efficient process of refolding, thus, hampering its production in large scale. We present in this work studies to refold the recombinant Sm29 using high hydrostatic pressure, a mild condition to dissociate aggregated proteins, leading to refolding on a soluble conformation. Our studies resulted in high yield of rSm29 (73%) as a stably soluble and structured protein. The refolded antigen presented protective effect against S. mansoni development in immunized mice. We concluded that the refolding process by application of high hydrostatic pressure succeeded, and the procedure can be scaled-up, allowing industrial production of Sm29.  相似文献   

5.
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.  相似文献   

6.
The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types. We have also found that STIM1 co-immunoprecipitates with TSP-4 and cartilage oligomeric matrix protein (COMP), and that a recombinant version of the N-terminal domain of STIM1 binds to the signature domain of TSP-1 and COMP. The association of the TSPs with STIM1 is observed in both the presence and absence of calcium indicating that the calcium-dependent conformation of the signature domain of TSPs is not required for binding. Thus, this interaction could occur in the ER under conditions of normal or low calcium concentration. Furthermore, we observed that the expression of COMP in HEK 293 cells decreases STIM1-mediated calcium release activated calcium (CRAC) channel currents and increases arachidonic acid calcium (ARC) channel currents. These data indicate that the TSPs regulate STIM1 function and participate in the reciprocal regulation of two channels that mediate calcium entry into the cell.  相似文献   

7.
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering.  相似文献   

8.
BackgroundThe development of a vaccine conferring long-lasting immunity remains a challenge against visceral leishmaniasis (VL). Immunoproteomic characterization of Leishmania donovani proteins led to the identification of a novel protein NAD+-dependent Silent Information regulatory-2 (SIR2 family or sirtuin) protein (LdSir2RP) as one of the potent immunostimulatory proteins. Proteins of the SIR2 family are characterized by a conserved catalytic domain that exerts unique NAD-dependent deacetylase activity. In the present study, an immunobiochemical characterization of LdSir2RP and further evaluation of its immunogenicity and prophylactic potential was done to assess for its possible involvement as a vaccine candidate against leishmaniasis.Conclusion/SignificanceThe immunobiochemical characterization strongly suggest the potential of rLdSir2RP as vaccine candidate against VL and supports the concept of its being effective T-cell stimulatory antigen.  相似文献   

9.
Lactobacillus surface layer proteins: structure, function and applications   总被引:1,自引:0,他引:1  
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.  相似文献   

10.
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates.  相似文献   

11.
Annexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an α-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1. This study used circular dichroism spectroscopy to show that a rat annexin A1 N-terminal peptide possesses random coil structure in aqueous buffer but an α-helical structure in the presence of small unilamellar vesicles. The binding of peptides to membranes was confirmed by surface pressure (Langmuir film balance) measurements using phosphatidylcholine/phosphatidylserine monolayers, which show a significant increase after injection of rat annexin A1 N-terminal peptides. Lamellar neutron diffraction with human and rat annexin A1 N-terminal peptides reveals an intercalation of the helical peptides with the phospholipid bilayer, with the helix axis lying parallel to the surface of membrane. Our findings confirm that phospholipid membranes assist the folding of the N-terminal peptides into α-helical structures and that this conformation enables favorable direct interactions with the membrane. The results are consistent with the hypothesis that the N-terminal domain of annexin A1 can serve as a secondary membrane binding site in the process of membrane aggregation by providing a peripheral membrane anchor.  相似文献   

12.
Escherichia coli cell division is effected by a large assembly of proteins called the divisome, of which a subcomplex consisting of three bitopic inner membrane proteins, FtsQ, FtsB, and FtsL, is an essential part. These three proteins, hypothesized to link cytoplasmic to periplasmic events during cell division, contain large periplasmic domains that are of major importance for function and complex formation. The essential nature of this subcomplex, its low abundance, and its multiple interactions with key divisome components in the relatively accessible periplasm make it an attractive target for the development of protein-protein interaction inhibitors. Although the crystal structure of the periplasmic domain of FtsQ has been solved, the structure of the FtsQBL complex is unknown, with only very crude indications of the interactions in this complex. In this study, we used in vivo site-specific photo cross-linking to probe the surface of the FtsQ periplasmic domain for its interaction interfaces with FtsB and FtsL. An interaction hot spot for FtsB was identified around residue Ser-250 in the C-terminal region of FtsQ and a membrane-proximal interaction region for both proteins around residue Lys-59. Sequence alignment revealed a consensus motif overlapping with the C-terminal interaction hot spot, underlining the importance of this region in FtsQ. The identification of contact sites in the FtsQBL complex will guide future development of interaction inhibitors that block cell division.  相似文献   

13.
The thrombospondins (TSPs) are a family of five matricellular proteins that appear to function as adapter molecules to guide extracellular matrix synthesis and tissue remodeling in a variety of normal and disease settings. Various TSPs have been shown to bind to fibronectin, laminin, matrilins, collagens and other extracellular matrix (ECM) proteins. The importance of TSP-1 in this context is underscored by the fact that it is rapidly deposited at the sites of tissue damage by platelets. An association of TSPs with collagens has been known for over 25 years. The observation that the disruption of the TSP-2 gene in mice leads to collagen fibril abnormalities provided important in vivo evidence that these interactions are physiologically important. Recent biochemical studies have shown that TSP-5 promotes collagen fibril assembly and structural studies suggest that TSPs may interact with collagens through a highly conserved potential metal ion dependent adhesion site (MIDAS). These interactions are critical for normal tissue homeostasis, tumor progression and the etiology of skeletal dysplasias.  相似文献   

14.
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.  相似文献   

15.
In Escherichia coli cell division is driven by the tubulin-like GTPase, FtsZ, which forms the cytokinetic Z-ring. The Z-ring serves as a dynamic platform for the assembly of the multiprotein divisome, which catalyzes membrane cleavage to create equal daughter cells. Several proteins effect FtsZ assembly, thereby providing spatiotemporal control over cell division. One important class of FtsZ interacting/regulatory proteins is the Z-ring-associated proteins, Zaps, which typically modulate Z-ring formation by increasing lateral interactions between FtsZ protofilaments. Strikingly, these Zap proteins show no discernable sequence similarity, suggesting that they likely harbor distinct structures and mechanisms. The 19.8-kDa ZapC in particular shows no homology to any known protein. To gain insight into ZapC function, we determined its structure to 2.15 Å and performed genetic and biochemical studies. ZapC is a monomer composed of two domains, an N-terminal α/β region and a C-terminal twisted β barrel-like domain. The structure contains two pockets, one on each domain. The N-domain pocket is lined with residues previously implicated to be important for ZapC function as an FtsZ bundler. The adjacent C-domain pocket contains a hydrophobic center surrounded by conserved basic residues. Mutagenesis analyses indicate that this pocket is critical for FtsZ binding. An extensive FtsZ binding surface is consistent with the fact that, unlike many FtsZ regulators, ZapC binds the large FtsZ globular core rather than C-terminal tail, and the presence of two adjacent pockets suggests possible mechanisms for ZapC-mediated FtsZ bundling.  相似文献   

16.
Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1–Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.  相似文献   

17.
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.  相似文献   

18.
Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM involves actin cytoskeletal pathways or TSP oligomer state. From tests of a suite of pharmacological inhibitors of small GTPases, actomyosin-based contractility, or actin microfilament integrity and dynamics, cytochalasin D and jasplakinolide treatment of cells were identified to result in altered ECM patterning of a model TSP1 trimer. The strong effect of cytochalasin D indicated that mechanisms controlling puncta patterning depend on global F-actin dynamics. Similar spatial changes were obtained with endogenous TSPs after cytochalasin D treatment, implicating physiological relevance. Under matched experimental conditions with ectopically-expressed TSPs, the magnitude of the effect was markedly lower for pentameric TSP5 and Drosophila TSP, than for trimeric TSP1 or dimeric Ciona TSPA. To distinguish between the variables of protein sequence or oligomer state, we generated novel, chimeric pentamers of TSP1. These proteins accumulated within ECM at higher levels than TSP1 trimers, yet the effect of cytochalasin D on the spatial distribution of puncta was reduced. These findings introduce a novel concept that F-actin dynamics modulate the patterning of TSPs in ECM and that TSP oligomer state is a key determinant of this process.  相似文献   

19.
Rhomboid-1 is a serine protease that cleaves the membrane domain of the Drosophila EGF-family protein, Spitz, to release a soluble growth factor. Several vertebrate rhomboid-like proteins have been identified, although their substrates and functions remain unknown. The human rhomboid, RHBDL2, cleaves the membrane domain of Drosophila Spitz when the proteins are co-expressed in mammalian cells. However, the membrane domains of several mammalian EGF-family proteins were not cleaved by RHBDL2, suggesting that the endogenous targets of the human protease are not EGF-related factors. We demonstrate that the amino acid sequence at the luminal face of the membrane domain of a substrate protein determines whether it is cleaved by RHBDL2. Based on this finding, we predicted B-type ephrins as potential RHBDL2 substrates. We found that one of these, ephrinB3, was cleaved so efficiently by the protease that little ephrinB3 was detected on the surface of cells co-expressing RHBDL2. These results raise the possibility that RHBDL2-mediated proteolytic processing may regulate intercellular interactions between ephrinB3 and eph receptors.  相似文献   

20.
Signaling initiation by receptor-like kinases (RLKs) at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR) RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP) receptor FLS2 builds signaling complexes with BAK1 (SERK3). We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope) ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs) of the significantly different receptors FLS2, EFR (MAMP receptors), PEPR1 (damage-associated molecular pattern (DAMP) receptor), and BRI1 (hormone receptor). Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants expressing FLS2 with the Q530A+Q627A double mutation were impaired both in detectable interaction with BAK1 and in FLS2-mediated responses, lending overall support to current models of FLS2 structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号