首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

2.
Three membrane proteins required for cell division in Escherichia coli, FtsQ, FtsL and FtsB, localize to the cell septum. FtsL and FtsB, which each contain a leucine zipper-like sequence, are dependent on each other for this localization, and each of them is dependent on FtsQ. However, FtsQ is found at the cell division site in the absence of FtsL and FtsB. FtsQ, in turn, requires FtsK for its localization. Here, we show that FtsL, FtsB and FtsQ form a complex in vivo. Strikingly, this complex forms in the absence of FtsK, which is required for the localization of all three proteins to the mid-cell. These findings indicate that the FtsL, FtsB, FtsQ interactions can take place in cells before movement to the mid-cell and that migration to this position might occur only after the formation of the complex. Evidence indicating the regions of the three proteins involved in complex formation is presented. These findings provide the first example of preassembly of a subcomplex of cell division proteins before their localization to the septal region.  相似文献   

3.
Structural and mutational analysis of the cell division protein FtsQ   总被引:1,自引:0,他引:1  
Bacterial cytokinesis requires the divisome, a complex of proteins that co-ordinates the invagination of the cytoplasmic membrane, inward growth of the peptidoglycan layer and the outer membrane. Assembly of the cell division proteins is tightly regulated and the order of appearance at the future division site is well organized. FtsQ is a highly conserved component of the divisome among bacteria that have a cell wall, where it plays a central role in the assembly of early and late cell division proteins. Here, we describe the crystal structure of the major, periplasmic domain of FtsQ from Escherichia coli and Yersinia enterocolitica . The crystal structure reveals two domains; the α-domain has a striking similarity to polypeptide transport-associated (POTRA) domains and the C-terminal β-domain forms an extended β-sheet overlaid by two, slightly curved α-helices. Mutagenesis experiments demonstrate that two functions of FtsQ, localization and recruitment, occur in two separate domains. Proteins that localize FtsQ need the second β-strand of the POTRA domain and those that are recruited by FtsQ, like FtsL/FtsB, require the surface formed by the tip of the last α-helix and the two C-terminal β-strands. Both domains act together to accomplish the role of FtsQ in linking upstream and downstream cell division proteins within the divisome.  相似文献   

4.
Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.  相似文献   

5.
The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.  相似文献   

6.
Cell division in Escherichia coli requires the concerted action of at least 10 essential proteins. One of these proteins, FtsQ, is physically associated with multiple essential division proteins, including FtsK, FtsL, FtsB, FtsW, and FtsI. In this work we performed a genetic analysis of the ftsQ gene. Our studies identified C-terminal residues essential for FtsQ's interaction with two downstream proteins, FtsL and FtsB. Here we also describe a novel screen for cell division mutants based on a wrinkled-colony morphology, which yielded several new point mutations in ftsQ. Two of these mutations affect localization of FtsQ to midcell and together define a targeting role for FtsQ's alpha domain. Further characterization of one localization-defective mutant protein [FtsQ(V92D)] revealed an unexpected role in localization for the first 49 amino acids of FtsQ. Finally, we found a suppressor of FtsQ(V92D) that was due to a point mutation in domain 1C of FtsA, a domain previously implicated in the recruitment of divisome proteins. However, despite reports of a potential interaction between FtsA and FtsQ, suppression by FtsA(I143L) is not mediated via direct contact with FtsQ. Rather, this mutation acts as a general suppressor of division defects, which include deletions of the normally essential genes zipA and ftsK and mutations in FtsQ that affect both localization and recruitment. Together, these results reveal increasingly complex connections within the bacterial divisome.  相似文献   

7.
FtsL and FtsB are two inner-membrane proteins that are essential constituents of the cell division apparatus of Escherichia coli. In this study, we demonstrate that the leucine zipper-like (LZ) motifs, located in the periplasmic domain of FtsL and FtsB, are required for an optimal interaction between these two essential proteins.  相似文献   

8.
The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin‐like FtsZ protein into a ring structure at midcell. This so‐called Z‐ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a ‘forgotten’ allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK and FtsN, and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete.  相似文献   

9.
DivIB(FtsQ), FtsL, and DivIC(FtsB) are enigmatic membrane proteins that are central to the process of bacterial cell division. DivIB(FtsQ) is dispensable in specific conditions in some species, and appears to be absent in other bacterial species. The presence of FtsL and DivIC(FtsB) appears to be conserved despite very low sequence conservation. The three proteins form a complex at the division site, FtsL and DivIC(FtsB) being associated through their extracellular coiled-coil region. We report here structural investigations by NMR, small-angle neutron and x-ray scattering, and interaction studies by surface plasmon resonance, of the complex of DivIB, FtsL, and DivIC from Streptococcus pneumoniae, using soluble truncated forms of the proteins. We found that one side of the “bean”-shaped central β-domain of DivIB interacts with the C-terminal regions of the dimer of FtsL and DivIC. This finding is corroborated by sequence comparisons across bacterial genomes. Indeed, DivIB is absent from species with shorter FtsL and DivIC proteins that have an extracellular domain consisting only of the coiled-coil segment without C-terminal conserved regions (Campylobacterales). We propose that the main role of the interaction of DivIB with FtsL and DivIC is to help the formation, or to stabilize, the coiled-coil of the latter proteins. The coiled-coil of FtsL and DivIC, itself or with transmembrane regions, could be free to interact with other partners.Cell division is one of the defining features of life. Understanding the division of bacteria is also required to find novel antibiotic strategies. Numerous studies, carried out mostly with the model organisms Escherichia coli and Bacillus subtilis have uncovered several components of the divisome, which can be defined as the ensemble of proteins localized at the division site and participating in the process. Comparison of genomes and deletion studies indicate that the core of the divisome comprises eight conserved, mostly essential proteins: FtsZ, FtsA, FtsK, FtsQ(DivIB), FtsL, FtsB(DivIC), FtsW, and FtsI. Fts nomenclature applies to Gram-negative organisms, whereas Div nomenclature applies to Gram-positive bacteria. These proteins are listed here in the conditional order of their recruitment to the division site of E. coli (14).Processes in which they participate have been attributed to several division proteins. FtsZ forms polymers with an annular distribution on the cytoplasmic side of the membrane and governs the recruitment of the other proteins. FtsA may mediate the interaction of FtsZ with the membrane. FtsK participates to the resolution of chromosome dimers, and possibly to the membrane fission. FtsI, and likely FtsW, participate to septal cell wall formation (14). In contrast, the roles of FtsQ(DivIB), FtsL, and FtsB(DivIC) have not been firmly linked to any particular process.FtsQ(DivIB), FtsL, and FtsB(DivIC) are positioned in the middle of the conditional order of recruitment in E. coli and B. subtilis. When the temporality of the recruitment was examined, FtsQ(DivIB) was found to belong to the late recruits, together with the proteins involved in cell wall assembly (5). In E. coli, the presence of FtsL and FtsB at the division site is mutually dependent, and their localization depends on that of FtsQ (6, 7). In B. subtilis, the presence of FtsL and DivIC at mid-cell depends on that of DivIB, at the temperature at which DivIB is essential, and reciprocally (8, 9). A complex comprising FtsQ, FtsL, and FtsB was isolated from E. coli by co-immunoprecipitation (10), and reconstituted in vitro with recombinant soluble forms of pneumococcal DivIB, FtsL, and DivIC (11). The interaction of the three proteins was also confirmed by yeast and bacterial triple hybrid (12, 13).The genes ftsL and ftsB(divIC) are essential in E. coli and B. subtilis (6, 1416) and presumably in Streptococcus pneumoniae (17). The essentiality of ftsQ(divIB) in laboratory conditions varies between species. The gene ftsQ is essential in E. coli (18), but divIB is essential only at high temperatures in B. subtilis (9, 19), or in a chemically defined medium in S. pneumoniae (17). Under these conditions, the essentiality of DivIB appears to be a consequence of the protection from proteolysis that it provides to FtsL (8, 17).FtsQ(DivIB), FtsL, and FtsB(DivIC) are bitopic membrane proteins with an N-terminal cytoplasmic region, a single transmembrane segment, and an extracytoplasmic region. The extracellular part is necessary and sufficient for the localization and function of FtsQ(DivIB), provided that it is anchored to the membrane (e.g. Refs. 20 and 21)), although the transmembrane segment also contributes to the localization (22, 23). The extracellular part is organized in three regions termed α, β, and γ. The crystal structure of a region consisting of the α- and β-domains was solved for FtsQ from E. coli and Yersinia enterocolitica (24). The α-domain, comprising about 70 amino acids proximal to the cytoplasmic membrane, corresponds to the POTRA (for polypeptide transport-associated) domain first identified by sequence analysis and proposed to function as a molecular chaperone (25). The α- and β-domains form the conserved region of the FtsQ(DivIB) protein. The γ-region constitutes a C-terminal tail. It is highly variable in length and sequence and predicted to be unfolded. The γ-region was not observed in the structures from E. coli and Y. entercolitica, thus confirming its flexible nature (24).The α-domain in the recombinant soluble form of the extracellular part of DivIB from Geobacillus stearothermophilus was digested by trypsin and therefore considered to be largely unfolded (26). The γ-region was also removed by trypsin digestion, together with a C-terminal fragment of the β-domain. The structure of the resulting shorter β-domain from G. stearothermophilus was solved by NMR (26) and lacks the two C-terminal β-strands.Localization epitopes have been identified in the transmembrane segment, the α-domain, and a region encompassing the C-terminal part of the β-domain and γ-tail of DivIB from B. subtilis (23). Likewise in E. coli, a region in the α-domain is required for localization of FtsQ, whereas the C-terminal region of the β-domain and the last α-helix are required for recruitment of FtsL and FtsB (24). In S. pneumoniae, the essentiality of DivIB in defined medium was found to reside in the C-terminal region of the β-domain (17).No experimental structure is known for FtsL or FtsB(DivIC). Both are small proteins comprising between 90 and 140 amino acids. The number of residues is sometimes larger, as in Mycobacterium tuberculosis (384 for FtsL and 228 for FtsB), due to N- and/or C-terminal extensions consisting of mostly charged and polar amino acids or proline-rich sequences. The major part of FtsL or FtsB(DivIC) is extracellular and contains a region proximal to the transmembrane segment, predicted to form a coiled-coil of about five heptads. Coiled-coil helices associate longitudinally to mediate protein association. It is possible that the coiled-coil helices are continuations of the transmembrane helices, although a proline (known to break helices) is present in some species between the two segments. Following the coiled-coil region is a 25–35-residue long C-terminal region in both FtsL and DivIC(FtsB). This region was recently shown in FtsB to be required for interaction with FtsQ in E. coli (27).We report here the results of structural studies in solution of a ternary complex consisting of the β- and γ-segments of DivIB, and a constrained dimer of the extracellular parts of FtsL and DivIC from S. pneumoniae. Despite the coiled-coil predictions, the recombinant extracellular domains of FtsL and DivIC did not interact in vitro (11, 28). Forced dimerization was obtained by fusion with artificial coiled-coil peptides k5 and e5 (35 residues long), which are known to form a heterodimer due to their complementarity of charge, with a nanomolar dissociation constant (29). The k5- and e5-coils were fused to the extracellular domain of FtsL and DivIC, to give rise to KL and EC fusion proteins, respectively. The constrained dimer (KL/EC) was shown to interact with the extracellular part of DivIB (DivIBext), yielding a soluble complex amenable to structural studies (11).The overall shape of the complex and its constituents was probed using small-angle x-ray scattering (SAXS)2 and small-angle neutron scattering (SANS). NMR was used to investigate the interface between the proteins by chemical shift mapping. The interaction was further investigated using surface plasmon resonance with truncated forms of the proteins. The complex of DivIB, FtsL, and DivIC is formed by the interaction of one face of the β-domain of DivIB with the C-terminal regions of FtsL and DivIC, at the tip of an elongated rod formed by the coiled-coil segments. The α-domain of DivIB and the coiled-coil regions of FtsL and DivIC remain free to interact with other proteins of the division apparatus.  相似文献   

10.
Escherichia coli FtsN is a bitopic membrane protein that is essential for triggering active cell constriction. A small periplasmic subdomain (EFtsN) is required and sufficient for function, but its mechanism of action is unclear. We isolated extragenic EFtsN*‐suppressing mutations that restore division in cells producing otherwise non‐functional variants of FtsN. These mapped to the IC domain of FtsA in the cytoplasm and to small subdomains of the FtsB and FtsL proteins in the periplasm. All FtsB and FtsL variants allowed survival without EFtsN, but many then imposed a new requirement for interaction between the cytoplasmic domain of FtsN (NFtsN) and FtsA. Alternatively, variants of FtsA, FtsB or FtsL acted synergistically to allow cell division in the complete absence of FtsN. Strikingly, moreover, substitution of a single residue in FtsB (E56) proved sufficient to rescue ΔftsN cells as well. In FtsN+ cells, EFtsN*‐suppressing mutations promoted cell fission at an abnormally small cell size, and caused cell shape and integrity defects under certain conditions. This and additional evidence support a model in which FtsN acts on either side of the membrane to induce a conformational switch in both FtsA and the FtsBLQ subcomplex to de‐repress septal peptidoglycan synthesis and membrane invagination.  相似文献   

11.
FtsK is a multifunctional protein involved in both cell division and chromosome segregation. As far as its role in cell division is concerned, FtsK is among the first divisome proteins that localizes at mid-cell, after FtsZ, FtsA and ZipA, and is required for the recruitment of the other divisome components. The ability of FtsK to interact with several cell division proteins, namely FtsZ, FtsQ, FtsL and FtsI, by the two-hybrid assay was already shown by our group. In this work, we describe the identification of the protein domain(s) involved in the interaction with the cell division partner proteins. The biological role of some interactions is also discussed.  相似文献   

12.
Bacterial cytokinesis is orchestrated by an assembly of essential cell division proteins that form a supramolecular structure known as the divisome. DivIB and its orthologue FtsQ are essential members of the divisome in Gram-positive and Gram-negative bacteria respectively. DivIB is a bitopic membrane protein composed of an N-terminal cytoplasmic domain, a single-pass transmembrane domain, and a C-terminal extracytoplasmic region comprised of three separate protein domains. A molecular dissection approach was used to determine which of these domains are essential for recruitment of DivIB to incipient division sites and for its cell division functions. We show that DivIB has three molecular epitopes that mediate its localization to division septa; two epitopes are encoded within the extracytoplasmic region while the third is located in the transmembrane domain. It is proposed that these epitopes represent sites of interaction with other divisomal proteins, and we have used this information to develop a model of the way in which DivIB and FtsQ are integrated into the divisome. Remarkably, two of the three DivIB localization epitopes are dispensable for vegetative cell division; this suggests that the divisome is assembled using a complex network of protein–protein interactions, many of which are redundant and likely to be individually non-essential.  相似文献   

13.
FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle.  相似文献   

14.
Septation in Escherichia coli requires several gene products. One of these, FtsQ, is a simple bitopic membrane protein with a short cytoplasmic N terminus, a membrane-spanning segment, and a periplasmic domain. We have constructed a merodiploid strain that expresses both FtsQ and the fusion protein green fluorescent protein (GFP)-FtsQ from single-copy chromosomal genes. The gfp-ftsQ gene complements a null mutation in ftsQ. Fluorescence microscopy revealed that GFP-FtsQ localizes to the division site. Replacing the cytoplasmic and transmembrane domains of FtsQ with alternative membrane anchors did not prevent the localization of the GFP fusion protein, while replacing the periplasmic domain did, suggesting that the periplasmic domain is necessary and sufficient for septal targeting. GFP-FtsQ localization to the septum depended on the cell division proteins FtsZ and FtsA, which are cytoplasmic, but not on FtsL and FtsI, which are bitopic membrane proteins with comparatively large periplasmic domains. In addition, the septal localization of ZipA apparently did not require functional FtsQ. Our results indicate that FtsQ is an intermediate recruit to the division site.  相似文献   

15.
Heterocyst‐forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA‐dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two‐hybrid system. We found SepJ self‐interaction and a specific interaction with FtsQ, confirmed by co‐purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.  相似文献   

16.
Roles of pneumococcal DivIB in cell division   总被引:1,自引:0,他引:1  
DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the Delta divIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the Delta divIB mutant in defined medium. Functional mapping of the three distinct alpha, beta, and gamma domains of the extracellular region of DivIB revealed that a complete beta domain is required to fully rescue the deletion mutant. DivIB with a truncated beta domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to beta-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis.  相似文献   

17.
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.  相似文献   

18.
Bacterial cytokinesis is achieved through the coordinated action of a multiprotein complex known as the divisome. The Escherichia coli divisome is comprised of at least 10 essential proteins whose individual functions are mostly unknown. Most divisomal proteins have multiple binding partners, making it difficult to pinpoint epitopes that mediate pairwise interactions between these proteins. We recently introduced an artificial septal targeting approach that allows the interaction between pairs of proteins to be studied in vivo without the complications introduced by other interacting proteins (C. Robichon, G. F. King, N. W. Goehring, and J. Beckwith, J. Bacteriol. 190:6048-6059, 2008). We have used this approach to perform a molecular dissection of the interaction between Bacillus subtilis DivIB and the divisomal transpeptidase PBP 2B, and we demonstrate that this interaction is mediated exclusively through the extracytoplasmic domains of these proteins. Artificial septal targeting in combination with mutagenesis experiments revealed that the C-terminal region of the β domain of DivIB is critical for its interaction with PBP 2B. These findings are consistent with previously defined loss-of-function point mutations in DivIB as well as the recent demonstration that the β domain of DivIB mediates its interaction with the FtsL-DivIC heterodimer. These new results have allowed us to construct a model of the DivIB/PBP 2B/FtsL/DivIC quaternary complex that strongly implicates DivIB, FtsL, and DivIC in modulating the transpeptidase activity of PBP 2B.Bacterial cytokinesis is a highly coordinated process that is carried out by a multiprotein complex known as the divisome (9, 11, 37, 39). In Escherichia coli, there are at least 10 essential divisomal proteins that carry out the division process. Divisome formation is initiated at the incipient division site by the recruitment of the FtsZ ring (1) which provides a molecular scaffold onto which the other divisional proteins are subsequently loaded (24, 33) (Fig. (Fig.1).1). In E. coli, the first proteins to load after FtsZ are a group of predominantly cytoplasmic proteins (FtsA, ZapA, and ZipA) that stabilize nascent FtsZ protofilaments and tether them to the membrane. The stabilized Z-ring then acts as a platform for recruitment of the remaining essential divisomal proteins, which are all single- or multipass membrane proteins (i.e., FtsE/FtsX, FtsK, FtsQ, FtsB, FtsL, FtsW, FtsI, and FtsN). With the exception of FtsI, a transpeptidase that cross-links septal murein, the biochemical function of these proteins is unknown.Open in a separate windowFIG. 1.Schema showing the hierarchical pathway of divisome assembly in E. coli and B. subtilis (adapted from reference 30). For a protein to be recruited to the divisome, all of the proteins upstream from it in the hierarchical recruitment pathway must already be present at the septum. Groups of proteins that form a subcomplex independent of other divisomal proteins, such as the ternary complex formed between E. coli FtsQ, FtsB, and FtsL, are highlighted by gray boxes. Red lines denote pairwise protein-protein interactions that have been experimentally demonstrated using genetic and/or biochemical approaches. The question mark indicates that the precise location of FtsW in the divisome assembly pathway in B. subtilis is currently unknown. (C) Possible outcomes of a heterologous septal targeting experiment in E. coli in which ZapA-DivIB is employed as the bait and GFP-PBP 2B is the prey. A direct interaction between DivIB and PBP 2B should result in a fluorescent ring at midcell (or a pair of dots when viewed in cross-section) due the recruitment of GFP-PBP 2B to the divisome (left panel). In contrast, a halo of fluorescence should be visible around the cell periphery due to the membrane-bound GFP-PBP 2B if there is no interaction between these two proteins (right panel).Divisomal protein recruitment in both Bacillus subtilis and E. coli occurs in a stepwise manner. For example, for FtsQ to be recruited to the E. coli divisome, all of the proteins upstream from it in the hierarchical recruitment pathway shown in Fig. Fig.1A1A must already be present at the septum. However, this pathway is not completely linear; some proteins appear to form subcomplexes prior to their recruitment to the divisome, such as the ternary complex formed between E. coli FtsQ, FtsB, and FtsL (2, 12, 14, 15). The situation in B. subtilis is more complex and less well understood. For example, B. subtilis DivIB, DivIC, FtsL, and PBP 2B appear to be recruited to the septum as an interdependent group late in the cell cycle (10) (Fig. (Fig.1B).1B). To further complicate matters, once these individual proteins or subcomplexes have been recruited to the divisome, they engage in a complex network of protein-protein interactions with other divisomal proteins (7, 8, 18, 23).The plethora of protein-protein interactions at the bacterial divisome makes it difficult to decipher which molecular epitopes on individual proteins mediate their interaction with other divisomal proteins. Thus, we recently introduced an artificial septal targeting (AST) technique that allowed us to examine interactions between pairs of interacting B. subtilis divisomal proteins in E. coli (30). This technique involves artificially targeting one of the B. subtilis proteins (the “bait”) to the E. coli divisome by fusing it to E. coli ZapA and then using fluorescence microscopy to determine whether it can recruit to the septum a green fluorescent protein (GFP) fusion to a putative interacting partner (the “prey”) (Fig. (Fig.1C).1C). The primary advantage of the AST technique is that it allows direct assessment of the interaction between two B. subtilis divisomal proteins without interference from other members of the divisome.We previously used AST to demonstrate a direct interaction between B. subtilis FtsL and DivIC and between DivIB and PBP 2B (30). The latter finding is consistent with the observation from bacterial two-hybrid studies that B. subtilis DivIB interacts directly with both PBP 2B and FtsL (5) and that the E. coli orthologs of these proteins (FtsI and FtsQ, respectively) also interact strongly (18). The extracellular domain of DivIB is divided into three subdomains, termed α, β, and γ (31). It was recently shown using a combination of nuclear magnetic resonance (NMR) spectroscopy and small-angle X-ray scattering (SAXS) that the concave face of the DivIB β domain makes direct contact with the C-terminal head of the FtsL-DivIC heterodimeric coiled coil (25), forming a stabilizing “cap” for these two intrinsically unstable proteins (32). In contrast, the α and γ regions of DivIB are not critical for formation of the DivIB/FtsL/DivIC ternary complex (25).The FtsQ/DivIB-FtsI/PBP 2B interaction appears to be widely conserved in both Gram-negative and Gram-positive bacteria, and therefore we decided to investigate the molecular details of this evolutionarily conserved interaction. By using a combination of AST and site-directed mutagenesis, we show that DivIB and PBP 2B interact exclusively through their extracytoplasmic regions and that this interaction is mediated by residues near the C terminus of DivIB. In combination with the results of previous studies, these new data have allowed us to construct a working model of the DivIB/PBP 2B/FtsL/DivIC complex.  相似文献   

19.
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.  相似文献   

20.
In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号