首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
gamma-Secretase is an aspartic protease that hydrolyzes type I membrane proteins within the hydrophobic environment of the lipid bilayer. Using the CHAPSO-solubilized gamma-secretase assay system, we previously found that gamma-secretase activity was sensitive to the concentrations of detergent and phosphatidylcholine. This strongly suggests that the composition of the lipid bilayer has a significant impact on the activity of gamma-secretase. Recently, level of secreted beta-amyloid protein was reported to be attenuated by increasing levels of phosphatidylinositol 4,5-diphosphate (PI(4,5)P2) in cultured cells. However, it is not clear whether PI(4,5)P2 has a direct effect on gamma-secretase activity. In this study, we found that phosphoinositides directly inhibited CHAPSO-solubilized gamma-secretase activity. Interestingly, neither phosphatidylinositol nor inositol triphosphate altered gamma-secretase activity. PI(4,5)P2 was also found to inhibit gamma-secretase activity in CHAPSO-insoluble membrane microdomains (rafts). Kinetic analysis of beta-amyloid protein production in the presence of PI(4,5)P2 suggested a competitive inhibition. Even though phosphoinositides are minor phospholipids of the membrane, the concentration of PI(4,5)P2 within the intact membrane has been reported to be in the range of 4-8 mm. The presence of PI(4,5)P2-rich rafts in the membrane has been reported in a range of cell types. Furthermore, gamma-secretase is enriched in rafts. Taking these data together, we propose that phosphoinositides potentially regulate gamma-secretase activity by suppressing its association with the substrate.  相似文献   

2.
As an extended study on development of anti-Alzheimer’s disease agent, we newly synthesized various dihydrofuran-fused perhydrophenanthrenes via o-quinodimethane chemistry. This study revealed that the introduction of carbon side-chain on 8-position or removal of the acetal moiety on 3-position arose a cytotoxicity on rat cortical neurons. On the other hand, the ethereal or thio-ethereal substituent on 8-position enhanced the elongation effect on Aβ-damaged neurons. The necessity of the cyano group on 10b position was also proved in this structure–activity-relationship study.  相似文献   

3.
Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.  相似文献   

4.
Altered intracellular Ca(2+) signaling has been observed in cells derived from Alzheimer's disease patients, and a possible link between gamma-secretase activity and the content of intracellular Ca(2+) stores has been suggested. To test this hypothesis we studied the effects of several gamma-secretase inhibitors on muscarinic receptor-mediated intracellular calcium release in the human salivary gland cell line HSG. Although several inhibitors in the peptide aldehyde class partially blocked carbachol-induced Ca(2+) transients, these effects did not appear to be due to gamma-secretase inhibition, and overall we found no evidence that inhibition of gamma-secretase activity had any significant effect on agonist-induced intracellular calcium release in HSG cells. In complementary experiments with presenilin-null cells we found that the reconstitution of gamma-secretase activity by transfection with wild-type presenilin 1 likewise had no significant effect on thapsigargin-induced Ca(2+) release. In a test of the specific hypothesis that the level of APP intracellular domain (AICD), the intracellular fragment of the beta-amyloid precursor protein (APP) resulting from gamma-secretase cleavage, can modulate the Ca(2+) content of the endoplasmic reticulum, we were unable to demonstrate any effect of APP small interfering RNA on the magnitude of carbachol-induced intracellular calcium release in HSG cells. Together our data cast considerable doubt on the hypothesis that there is a direct link between gamma-secretase activity and the content of intracellular Ca(2+) stores.  相似文献   

5.
Small DH 《Peptides》2002,23(7):1317-1321
The beta- and gamma-secretases cleave the amyloid protein precursor (APP) to release the amyloid protein (Abeta). While the beta-secretase has now been identified, the gamma-secretase remains an enigma. A number of mutations in the presenilins (PS) and APP have been shown to alter the cleavage specificity of gamma-secretase. However, the relationship between PS and gamma-secretase remains unclear. This article presents some models of gamma-secretase and suggests that the simplest interpretation of current data is that gamma-secretase is a complex of several proteases located in the lumen of secretory vesicles.  相似文献   

6.
A study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions. Small alkyl group substitution at the 5-position provided inhibitors equipotent with but possessing improved solubility.  相似文献   

7.
The Alzheimer disease-associated presenilin (PS) proteins apparently provide the active site of gamma-secretase, an unusual intramembrane-cleaving aspartyl protease. PSs principally occur as high molecular weight protein complexes that contain nicastrin (Nct) and additional so far unidentified components. Recently, PEN-2 has been implicated in gamma-secretase function. Here we identify PEN-2 as a critical component of PS1/gamma-secretase and PS2/gamma-secretase complexes. Strikingly, in the absence of PS1 and PS1/PS2, PEN-2 levels are strongly reduced. Similarly, PEN-2 levels are reduced upon RNA interference-mediated down-regulation of Nct. On the other side, down-regulation of PEN-2 by RNA interference is associated with reduced PS levels, impaired Nct maturation, and deficient gamma-secretase complex formation. We conclude that PEN-2 is an integral gamma-secretase complex component and that gamma-secretase complex components are expressed in a coordinated manner.  相似文献   

8.
Presenilin (PS)-dependent gamma-secretase cleavage is the final proteolytic step in generating amyloid beta protein (A beta), a key peptide involved in the pathogenesis of Alzheimer's disease. PS undergoes endoproteolysis by an unidentified 'presenilinase' to generate the functional N-terminal and C-terminal fragment heterodimers (NTF/CTF) that may harbor the gamma-secretase active site. To better understand the relationship between presenilinase and gamma-secretase, we characterized the biochemical properties of presenilinase and compared them with those of gamma-secretase. Similar to gamma-secretase, presenilinase was most active at acidic pH 6.3. Aspartyl protease inhibitor pepstatin A blocked presenilinase activity with an IC50 of approximately 1 microM. Difluoroketone aspartyl protease transition state analogue MW167 was relatively selective for presenilinase (IC50 < 1 microM) over gamma-secretase (IC50-16 microM). Importantly, removing the transition state mimicking moiety simultaneously abolished both presenilinase and gamma-secretase inhibition, suggesting that presenilinase, like gamma-secretase, is an aspartyl protease. Interestingly, several of the most potent gamma-secretase inhibitors (IC50 = 0.3 or 20 nM) failed to block presenilinase activity. Although de novo generation of PS1 fragments coincided with production of A beta in vitro, blocking presenilinase activity without reducing pre-existing fragment levels permitted normal de novo generation of A beta and amyloid intracellular domain. Therefore, presenilinase has characteristics of an aspartyl protease, but this activity is distinct from gamma-secretase.  相似文献   

9.
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.  相似文献   

10.
11.
Zhang L  Song L  Terracina G  Liu Y  Pramanik B  Parker E 《Biochemistry》2001,40(16):5049-5055
Recent studies of gamma-secretase have pointed out that it may be comprised of a multisubunit complex with presenilin 1 and presenilin 2 as central components. Elucidation of the biochemical mechanism of this enzymatic activity will provide important information for developing gamma-secretase inhibitors in Alzheimer's disease therapy. Here we describe the biochemical characterization of gamma-secretase activities using a sensitive, membrane-based assay system. Membranes were isolated from 293 cells expressing C99, the substrate of gamma-secretase. Upon incubation at 37 degrees C, C99 is cleaved by the endogenous gamma-secretase, and Abeta peptides are liberated. Abeta40 and Abeta42 gamma-secretase activities are very similar in terms of their kinetic profiles and pH dependence, supporting the notion that a single enzyme is involved in both Abeta40 and Abeta42 production. Pepstatin A inhibited Abeta40 and Abeta42 gamma-secretase activities with similar potency. Peptide difluoroketone and peptide aldehyde inhibitors inhibited Abeta40 production in a dose-dependent fashion, enhanced Abeta42 production at low concentrations, and inhibited Abeta42 production at high concentrations. Although the selective increase of Abeta42 by low concentrations of peptide difluoroketone and peptide aldehyde inhibitors has been reported in intact cells, the finding that this phenomenon occurs in a membrane-based assay system suggests that these compounds increase Abeta42 by a direct effect on gamma-secretase. The ability of these compounds to increase Abeta42 production may reflect allosteric modulation of the gamma-secretase complex by a mechanism related to that responsible for the increase of Abeta42 production by mutations in presenilins.  相似文献   

12.
Gamma-secretase is one of the critical enzymes required for the generation of amyloid-beta peptides from the beta-amyloid precursor protein. Because amyloid-beta peptides are generally accepted to play a key role in Alzheimer disease, gamma-secretase inhibition holds the promise for a disease-modifying therapy for this neurodegenerative condition. Although recent progress has enhanced the understanding of the biology and composition of the gamma-secretase enzyme complex, less information is available on the actual interaction of various inhibitor classes with the enzyme. Here we show that the two principal classes of inhibitor described in the scientific and patent literature, aspartyl protease transition state analogue and small molecule non-transition state inhibitors, display fundamental differences in the way they interact with the enzyme. Taking advantage of a gamma-secretase enzyme overexpressing cellular system and different radiolabeled gamma-secretase inhibitors, we observed that the maximal binding of non-transition state gamma-secretase inhibitors accounts only for half the number of catalytic sites of the recombinant enzyme complex. This characteristic stoichiometry can be best accommodated with a model whereby the non-transition state inhibitors bind to a unique site at the interface of a dimeric enzyme. Subsequent competition studies confirm that this site appears to be targeted by the main classes of small molecule gamma-secretase inhibitor. In contrast, the non-steroidal anti-inflammatory drug gamma-secretase modulator sulindac sulfide displayed noncompetitive antagonism for all types of inhibitor. This finding suggests that non-steroidal anti-inflammatory drug-type gamma-secretase modulators target an alternative site on the enzyme, thereby changing the conformation of the binding sites for gamma-secretase inhibitors.  相似文献   

13.
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.  相似文献   

14.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

15.
Maturation of gamma-secretase requires an endoproteolytic cleavage in presenilin-1 (PS1) within a peptide loop encoded by exon 9 of the corresponding gene. Deletion of the loop has been demonstrated to cause familial Alzheimer's disease. A synthetic peptide corresponding to the loop sequence was found to inhibit gamma-secretase in a cell-free enzymatic assay with an IC(50) of 2.1 microM, a value similar to the K(m) (3.5 microM) for the substrate C100. Truncation at either end, single amino acid substitutions at certain residues, sequence reversal, or randomization reduced its potency. Similar results were also observed in a cell-based assay using HEK293 cells expressing APP. In contrast to small-molecule gamma-secretase inhibitors, kinetic inhibition studies demonstrated competitive inhibition of gamma-secretase by the exon 9 peptide. Consistent with this finding, inhibitor cross-competition kinetics indicated noncompetitive binding between the exon 9 peptide and L685458, a transition-state analogue presumably binding at the catalytic site, and ligand competition binding experiments revealed no competition between L685458 and the exon 9 peptide. These data are consistent with the proposed gamma-secretase mechanism involving separate substrate-binding and catalytic sites and binding of the exon 9 peptide at the substrate-binding site, but not the catalytic site of gamma-secretase. NMR analyses demonstrated the presence of a loop structure with a beta-turn in the middle of the exon 9 peptide and a loose alpha-helical conformation for the rest of the peptide. Such a structure supports the hypothesis that this exon 9 peptide can adopt a distinct conformation, one that is compact enough to occupy the putative substrate-binding site without necessarily interfering with binding of small molecule inhibitors at other sites on gamma-secretase. We hypothesize that gamma-secretase cleavage activation may be a result of a cleavage-induced conformational change that relieves the inhibitory effect of the intact exon 9 loop occupying the substrate-binding site on the immature enzyme. It is possible that the DeltaE9 mutation causes Alzheimer's disease because cleavage activation of gamma-secretase is no longer necessary, alleviating constraints on Abeta formation.  相似文献   

16.
The enzyme gamma-secretase has long been considered a potential pharmaceutical target for Alzheimer disease. Presenilin (the catalytic subunit of gamma-secretase) and signal peptide peptidase (SPP) are related transmembrane aspartyl proteases that cleave transmembrane substrates. SPP and gamma-secretase are pharmacologically similar in that they are targeted by many of the same small molecules, including transition state analogs, non-transition state inhibitors, and amyloid beta-peptide modulators. One difference between presenilin and SPP is that the proteolytic activity of presenilin functions only within a multisubunit complex, whereas SPP requires no additional protein cofactors for activity. In this study, gamma-secretase inhibitor radioligands were used to evaluate SPP and gamma-secretase inhibitor binding pharmacology. We found that the SPP enzyme exhibited distinct binding sites for transition state analogs, non-transition state inhibitors, and the nonsteroidal anti-inflammatory drug sulindac sulfide, analogous to those reported previously for gamma-secretase. In the course of this study, cultured cells were found to contain an abundance of SPP binding activity, most likely contributed by several of the SPP family proteins. The number of SPP binding sites was in excess of gamma-secretase binding sites, making it essential to use selective radioligands for evaluation of gamma-secretase binding under these conditions. This study provides further support for the idea that SPP is a useful model of inhibitory mechanisms and structure in the SPP/presenilin protein family.  相似文献   

17.
gamma-Secretase activity is the final cleavage event that releases the amyloid beta peptide (Abeta) from the beta-secretase cleaved carboxyl-terminal fragment of the amyloid beta protein precursor (APP). No protease responsible for this highly unusual, purportedly intramembranous, cleavage has been definitively identified. We examined the substrate specificity of gamma-secretase by mutating various residues within or adjacent to the transmembrane domain of the APP and then analyzing Abeta production from cells transfected with these mutant APPs by enzyme-linked immunosorbent assay and mass spectrometry. Abeta production was also analyzed from a subset of transmembrane domain APP mutants that showed dramatic shifts in gamma-secretase cleavage in the presence or absence of pepstatin, an inhibitor of gamma-secretase activity. These studies demonstrate that gamma-secretase's cleavage specificity is primarily determined by location of the gamma-secretase cleavage site of APP with respect to the membrane, and that gamma-secretase activity is due to the action of multiple proteases exhibiting both a pepstatin- sensitive activity and a pepstatin-insensitive activity. Given that gamma-secretase is a major therapeutic target in Alzheimer's disease these studies provide important information with respect to the mechanism of Abeta production that will direct efforts to isolate the gamma-secretases and potentially to develop effective therapeutic inhibitors of pathologically relevant gamma-secretase activities.  相似文献   

18.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

19.
Nicastrin functions as a gamma-secretase-substrate receptor   总被引:17,自引:0,他引:17  
Shah S  Lee SF  Tabuchi K  Hao YH  Yu C  LaPlant Q  Ball H  Dann CE  Südhof T  Yu G 《Cell》2005,122(3):435-447
gamma-secretase catalyzes the intramembrane cleavage of amyloid precursor protein (APP) and Notch after their extracellular domains are shed by site-specific proteolysis. Nicastrin is an essential glycoprotein component of the gamma-secretase complex but has no known function. We now show that the ectodomain of nicastrin binds the new amino terminus that is generated upon proteolysis of the extracellular APP and Notch domains, thereby recruiting the APP and Notch substrates into the gamma-secretase complex. Chemical- or antibody-mediated blocking of the free amino terminus, addition of purified nicastrin ectodomain, or mutations in the ectodomain markedly reduce the binding and cleavage of substrate by gamma-secretase. These results indicate that nicastrin is a receptor for the amino-terminal stubs that are generated by ectodomain shedding of type I transmembrane proteins. Our data are consistent with a model where nicastrin presents these substrates to gamma-secretase and thereby facilitates their cleavage via intramembrane proteolysis.  相似文献   

20.
Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce the pathogenic beta-amyloid (Abeta) peptides, is an attractive approach to the treatment of Alzheimer disease. In addition to APP, however, several other gamma-secretase substrates have been identified (e.g. Notch), and altered processing of these substrates by gamma-secretase inhibitors could lead to unintended biological consequences. To study the in vivo consequences of gamma-secretase inhibition, the gamma-secretase inhibitor LY-411,575 was administered to C57BL/6 and TgCRND8 APP transgenic mice for 15 days. Although most tissues were unaffected, doses of LY-411,575 that inhibited Abeta production had marked effects on lymphocyte development and on the intestine. LY-411,575 decreased overall thymic cellularity and impaired intrathymic differentiation at the CD4(-)CD8(-)CD44(+)CD25(+) precursor stage. No effects on peripheral T cell populations were noted following LY-411,575 treatment, but evidence for the altered maturation of peripheral B cells was observed. In the intestine, LY-411,575 treatment increased goblet cell number and drastically altered tissue morphology. These effects of LY-411,575 were not seen in mice that were administered LY-D, a diastereoisomer of LY-411,575, which is a very weak gamma-secretase inhibitor. These studies show that inhibition of gamma-secretase has the expected benefit of reducing Abeta in a murine model of Alzheimer disease but has potentially undesirable biological effects as well, most likely because of the inhibition of Notch processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号