首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
By using a genomic fragment that carries the rice (Oryza sativa L.) fertility restorer gene, Rf-1, rice restorer lines harbouring multiple Rf-1 genes on different chromosomes were developed by genetic engineering and crossing. Hybrid lines that were obtained by crossing the restorer lines having two and three Rf-1 genes with a cytoplasmic male sterile (CMS) line had nearly 75 and 87.5% pollen fertility rates under a normal condition, respectively, whereas a conventional hybrid line showed a 50% pollen fertility rate. Furthermore, the seed set percentage under low temperature conditions was much higher in the hybrid lines with multiple Rf-1 genes than the conventional hybrid line. These results indicate that multiplication of the Rf-1 gene conferred cold tolerance at the booting stage to hybrid rice through increasing the potentially fertile pollen grains. This strategy to improve fertility at low temperature of hybrids could be applied to any grain crops that are developed based on CMS and its gametophytic restorer gene, let alone rice.  相似文献   

2.
利用杂种优势提高作物产量时, 生产杂交种的主要授粉控制系统是细胞质雄性不育及其恢复系统。在杂交品种的选育过程中, 优良恢复系选育至关重要。为了高效并准确地鉴定选择恢复材料, 同时更深入地研究恢复基因的作用机理, 近年来植物细胞质雄性不育恢复基因分子标记研究受到了广泛重视。本文综述了主要农作物水稻、油菜、小麦、棉花和玉米等细胞质雄性不育类型恢复基因的定位和分子标记研究进展, 并讨论了恢复基因的精确定位和分子标记鉴定在基因克隆和分子标记辅助选择育种中的意义和应用前景。  相似文献   

3.
The A1 cytoplasmic–nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F1 hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene–environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994–1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned ~31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed.  相似文献   

4.
5.
利用杂种优势提高作物产量时,生产杂交种的主要授粉控制系统是细胞质雄性不育及其恢复系统。在杂交品种的选育过程中,优良恢复系选育至关重要。为了高效并准确地鉴定选择恢复材料,同时更深入地研究恢复基因的作用机理,近年来植物细胞质雄性不育恢复基因分子标记研究受到了广泛重视。本文综述了主要农作物水稻、油菜、小麦、棉花和玉米等细胞质雄性不育类型恢复基因的定位和分子标记研究进展,并讨论了恢复基因的精确定位和分子标记鉴定在基因克隆和分子标记辅助选择育种中的意义和应用前景。  相似文献   

6.
Nuclear restorer of fertility (Rf) genes suppress the effects of mitochondrial genes causing cytoplasmic male sterility (CMS), a condition in which plants fail to produce viable pollen. Rf genes, many of which encode RNA‐binding pentatricopeptide repeat (PPR) proteins, are applied in hybrid breeding to overcome CMS used to block self‐pollination of the seed parent. Here, we characterise the repertoire of restorer‐of‐fertility‐like (RFL) PPR genes in barley (Hordeum vulgare). We found 26 RFL genes in the reference genome (‘Morex’) and an additional 51 putative orthogroups (POGs) in a re‐sequencing data set from 262 barley genotypes and landraces. Whereas the sequences of some POGs are highly conserved across hundreds of barley accessions, the sequences of others are much more variable. High sequence variation strongly correlates with genomic location – the most variable genes are found in a cluster on chromosome 1H. A much higher likelihood of diversifying selection was found for genes within this cluster than for genes present as singlets. This work includes a comprehensive analysis of the patterns of intraspecific variation of RFL genes. The RFL sequences characterised in this study will be useful for the development of new markers for fertility restoration loci.  相似文献   

7.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

8.
The organisation of mtDNA was investigated for 28 sources of cytoplasmic male sterility (CMS) and a fertile line (normal cytoplasm) of Helianthus annuus by Southern hybridisation. In addition to nine known mitochondrial genes (atp6, atp9, cob, coxI, coxII, coxIII, 18S, 5S and nd5) three probes for the open reading frames in the rearranged area of PET1, orfH522, orfH708 and orfH873, were used. Genetic similarities of the investigat-ed cytoplasms varied between 0.3 and 1. Cluster analyses using the UPGMA method allowed the distinction of ten mitochondrial (mt) types between the 29 investigated cytoplasms. Most mitochondrial types comprise two or more CMS sources, which could not be further separated, like the PET1-like CMS sources (with the exception of ANO1 and PRR1), or ANN1/ANN2/ANN3, ANN4/ ANN5, ARG3/RIG1, BOL1/EXI1/PEF1/PEP1 and GIG1/ PET2. ANL1, ANL2 and the fertile cytoplasms are also regarded as one mitochondrial type. Unique banding patterns were only observed for ANT1 (atp6), MAX1 (atp6, orfH522 and orfH708) and PRR1 (coxII). However, four of the mitochondrial types showed unique hybridisation signals: ANN4/ANN5 had characteristic bands for atp6 and orfH708, PEF1/PEP1/EXI1/BOL1 for atp6 and coxII, and PET2/GIG1 for atp9. The PET1-like cytoplasms all shared the same patterns for orfH522, orfH708 and cob (except ANO1). It could be demonstrated that CMS sources, like, e.g., PET2 and PEF1, are different from PET1 in mtDNA organisation and the CMS mechanism. Therefore, these CMS sources represent interesting candidates for the development of new hybrid breeding systems based on new CMS mechanisms. Received: 20 April 2001 / Accepted: 3 August 2001  相似文献   

9.
Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear‐encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)‐type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD–CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS‐associated gene in LD–CMS rice, similar to its role in BT–CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT–CMS rice. We also show that RF2 promotes degradation of atp6–orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT–CMS rice. The amount of ORF79 protein in LD–CMS rice was one‐twentieth of the amount in BT–CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD–CMS and BT–CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD–CMS and BT–CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD–CMS and BT–CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.  相似文献   

10.
Cytoplasmic male sterility (CMS) of rice (Oryza sativa L.) was first reported using the cytoplasm of a Chinese wild rice, Oryza rufipogon Griff. strain W1. However, it was not possible to characterize this ms-CW-type CMS in more detail until a restorer line had been developed due to the lack of restorer genes among cultivars thus far tested. The breeding of a restorer line (W1-R) was eventually achieved by transferring the restorer gene(s) of W1 to a cultivar. We report here the characterization of the ms-CW pollen grains and mapping of the restorer gene for ms-CW-type CMS. Pollen grains of the male-sterile plants appeared to be normal and viable based on the fluorochromatic reaction test, but they did not germinate on normal stigmas. The 1:1 segregation of fertile and sterile plants in a BC1F1 population from a cross between W1-R and a maintainer line demonstrated that fertility restoration is controlled by a single gene. The fertile seed set of all the F2 plants examined indicated that the fertility restoration functions gametophytically. We designated the fertility restorer gene Rfcw. Using cleaved amplified polymorphic sequence (CAPS) and simple sequence repeat (SSR) markers, we localized Rfcw to chromosome 4 with a genetic distance of 0.6 cM from the nearest SSR marker.  相似文献   

11.
12.
Kazama T  Toriyama K 《FEBS letters》2003,544(1-3):99-102
A fertility restorer gene (Rf-1) of [ms-bo] cytoplasmic male sterility (CMS) in rice has been reported to be responsible for the processing of RNA of aberrant atp6 of mitochondria. We have carried out map-based cloning of the Rf-1 gene and found that a 4.7-kb genomic fragment of a restorer line promoted the processing of aberrant atp6 RNA when introduced into a CMS line. The genomic fragment contained a single open reading frame encoding 18 repeats of the 35 amino acid pentatricopeptide repeat (PPR) motif. The cloned PPR gene is a possible candidate of Rf-1. A non-restoring genotype was identified to have deletions within the coding region.  相似文献   

13.
Two major nuclear genes, Rf3 and Rf4, are known to be associated with fertility restoration of wild-abortive cytoplasmic male sterility (WA-CMS) in rice. In the present study, through a comparative sequence analysis of the reported putative candidate genes, viz. PPR9-782-(M,I) and PPR762 (for Rf4) and SF21 (for Rf3), among restorer and maintainer lines of rice, we identified significant polymorphism between the two lines and developed a set of PCR-based codominant markers, which could distinguish maintainers from restorers. Among the five markers developed targeting the polymorphisms in PPR9-782-(M,I), the marker RMS-PPR9-1 was observed to show clear polymorphism between the restorer (n = 120) and maintainer lines (n = 44) analyzed. Another codominant marker, named RMS-PPR762 targeting PPR762, displayed a lower efficiency in identification of restorers and maintainers, indicating that PPR9-782-(M,I) is indeed the candidate gene for Rf4. With respect to Rf3, a codominant marker, named RMS-SF21-5 developed targeting SF21, displayed significantly lower efficiency in identification of restorers and non-restorers as compared to the Rf4-specific markers. Validation of these markers in a F2 mapping population segregating for fertility restoration indicated that Rf4 has a major influence on fertility restoration and Rf3 is a minor gene. Further, the functional marker RMS-PPR9-1 was observed to be very useful in identification of impurities in a seed lot of the popular hybrid, DRRH3. Interestingly, when RMS-PPR9-1 and RMS-SF21-5 were considered in conjunction with analysis, near-complete, marker–trait co-segregation was observed, indicating that deployment of the candidate gene-specific markers both Rf4 and Rf3, together, can be helpful in accurate identification of fertility restorer lines and can facilitate targeted transfer of the two restorer genes into elite varieties through marker-assisted breeding.  相似文献   

14.
15.
Wild-abortive (WA), Honglian (HL) and Baro-II (BT) are three important cytoplasmic male sterility (CMS) types in rice. It is essential to investigate genetic mode and allelism of fertility restorer (Rf) genes and the relationship between Rf and CMS. Fertility of the all test-cross F1 plants shows that the restorer-maintainer relationship is similar for HL-CMS and BT-CMS, while that is variance for WA-CMS and HL-CMS (or BT-CMS), respectively. Genetic analysis of Rf genes indicates that HL-or BT-CMS are controlled by single dominant Rf gene and WA-CMS is controlled by one or two pairs of dominant Rf genes, which reflects the characters of the gametophytic and sporophytic restoration CMS type. It is concluded that there are at least three Rf loci in different accessions with Rf genes for each CMS type.  相似文献   

16.
A rice nuclear gene, Rf-1, restores the pollen fertility disturbed by the BT-type male sterile cytoplasm, and is widely used for commercial seed production of japonica hybrid varieties. Genomic fragments carrying Rf-1 were identified by conducting chromosome walking and a series of complementation tests. Isolation and analysis of cDNA clones corresponding to the fragments demonstrated that Rf-1 encodes a mitochondrially targeted protein containing 16 repeats of the 35-aa pentatricopeptide repeat (PPR) motif. Sequence analysis revealed that the recessive allele, rf-1, lacks one nucleotide in the putative coding region, presumably resulting in encoding a truncated protein because of a frame shift. Rice Rf-1 is the first restorer gene isolated from cereal crops that has the property of reducing the expression of the cytoplasmic male sterility (CMS)-associated mitochondrial gene like many other restorer genes. The present findings may facilitate not only elucidating the mechanisms of male sterility by the BT cytoplasm and its restoration by Rf-1 but also isolating other restorer genes from cereal crops, especially rice.  相似文献   

17.
18.
植物细胞质雄性不育及其育性恢复的分子生物学研究进展   总被引:3,自引:0,他引:3  
植物细胞质雄性不育(CMS)和恢复系统在作物杂交种子生产中具有重要的意义。综述了目前已发现的与植物CMS相关的线粒体DNA位点,育性恢复基因对CMS相关DNA位点表达的影响,育性恢复基因的分子标记定位、克隆,及育性恢复分子机理等方面的研究进展,并讨论了恢复基因在植物分子育种上的应用。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号