首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
It has been shown that all-trans retinoic acid induces prematurely hepatic glucokinase mRNA in ten days-old neonatal rat hepatocytes, however, this effect could be related to the capacity of the retinoid to promote a more differentiated state of the hepatocyte. In this report we demonstrate that physiological concentrations of all-trans retinoic acid stimulate glucokinase activity in both mature fully differentiated hepatocytes and at the onset of the induction of the enzyme in 15 to 17 days-old neonatal hepatocytes. The effects produced by the retinoid were similar both in magnitude and in time, to those elicited by insulin, a well-known stimulator of hepatic glucokinase expression. No additive effect was observed when insulin and retinoic acid were tested together. Using the branched DNA assay, a sensitive signal amplification technique, we detected relative increases in glucokinase mRNA levels of about 70% at 3 and 24 h after the treatment with 10(-6) M all-trans retinoic acid, in both neonatal and adult hepatocytes. These data show that retinoic acid exerts a stimulatory effect on hepatic glucokinase independent of the hepatocyte stage of maturity and suggest a physiological role of retinoic acid on glucose metabolism. The action of retinoic acid on hepatic glucokinase might explain previous observations on the relationship between vitamin A status and liver glycogen synthesis. These findings may serve as basis for further investigations on the biological functions of retinoic acid derivatives on hepatic glucose metabolism.  相似文献   

2.
The differential tissue-specific regulation of glucokinase activity in liver and pancreatic islet cells was investigated in the insulinoma-bearing rat. A transplantable insulinoma caused hyperinsulinemia and hypoglycemia in the host by 2-3 months after implantation. Suppression of the pancreatic B-cells by the high insulin and/or low glucose manifested itself by a decrease of insulin in islet tissue. Removal of the tumor initiated transient insulin deficiency and hyperglycemia with extremes of these changes at 24 h after tumor resection. These conditions markedly affected glucose phosphorylation in the islet cells: glucokinase activity was reduced 71% in islet samples from insulinoma-bearing rats, and the enzyme fully recovered within 24 h after tumor resection. Hexokinase activity, by contrast, was not affected by these manipulations. To evaluate the relative contributions of hypoglycemia and hyperinsulinemia in islet glucokinase adaptation, glucose was intravenously infused to insulinoma-bearing rats; glycemia in excess of 150 mg/100 ml combined with excessive hyperinsulinemia resulted in a partial recovery of islet glucokinase activity, first apparent after 9 h of glucose infusion and with doubling of the activity after 24 h after glucose loading. In contrast, liver glucokinase was increased nearly 4-fold at the time of extreme hypoglycemia and hyperinsulinemia and rapidly fell to control rates following tumor removal. Intravenous infusion of glucose for 24 h into the tumor-bearing rat (i.e. hyperglycemia combined with excessive plasma insulin) had no influence on liver glucokinase activity. Liver hexokinase was not influenced by any of these experimental manipulations. The data indicate that the activities of pancreatic islet and liver glucokinase are regulated in a differential manner. Insulin is apparently the primary determinant of liver glucokinase and glucose seems to control islet glucokinase. Biochemical mechanisms for differential organ-specific regulation of glucokinase activity seem to have evolved such that this enzyme may play a dual role in glucose homeostasis, namely to serve as insulin-dependent glucose sensor in the B-cells and as insulin-sensitive determinant of hepatic glucose use.  相似文献   

3.
Glycogen-targeting subunits of protein phosphatase-1 (PP-1) are scaffolding proteins that facilitate the regulation of key enzymes of glycogen metabolism by PP-1. In the current study, we have tested the effects of hepatic expression of GMDeltaC, a truncated version of the muscle-targeting subunit isoform, in rats rendered insulin-deficient via injection of a single moderate dose of streptozotocin (STZ). Three key findings emerged. First, GMDeltaC expression in liver was sufficient to fully normalize blood glucose levels (from 335 +/- 31 mg/dl prior to viral injection to 109 +/- 28 mg/dl 6 days after injection) and liver glycogen content in STZ-injected rats. Second, this normalization occurred despite very low levels of liver glucokinase expression in the insulin-deficient STZ-injected rats. Finally, the hyperphagia induced by STZ injection was completely reversed by GMDeltaC expression in liver. In contrast to these findings with GMDeltaC, overexpression of another targeting subunit, GL, in STZ-injected rats caused a large increase in liver glycogen stores but only a transient decrease in food intake and blood glucose levels. The surprising demonstration of a glucose-lowering effect of GMDeltaC in the background of depressed hepatic glucokinase expression suggests that controlled stimulation of liver glycogen storage may be an effective mechanism for improving glucose homeostasis, even when normal pathways of glucose disposal are impaired.  相似文献   

4.
Characterization of glucokinase regulatory protein-deficient mice   总被引:3,自引:0,他引:3  
The glucokinase regulatory protein (GKRP) inhibits glucokinase competitively with respect to glucose by forming a protein-protein complex with this enzyme. The physiological role of GKRP in controlling hepatic glucokinase activity was addressed using gene targeting to disrupt GKRP gene expression. Heterozygote and homozygote knockout mice have a substantial decrease in hepatic glucokinase expression and enzymatic activity as measured at saturating glucose concentrations when compared with wild-type mice, with no change in basal blood glucose levels. Interestingly, when assayed under conditions to promote the association between glucokinase and GKRP, liver glucokinase activity in wild-type and null mice displayed comparable glucose phosphorylation capacities at physiological glucose concentrations (5 mM). Thus, despite reduced hepatic glucokinase expression levels in the null mice, glucokinase activity in the liver homogenates was maintained at nearly normal levels due to the absence of the inhibitory effects of GKRP. However, following a glucose tolerance test, the homozygote knockout mice show impaired glucose clearance, indicating that they cannot recruit sufficient glucokinase due to the absence of a nuclear reserve. These data suggest both a regulatory and a stabilizing role for GKRP in maintaining adequate glucokinase in the liver. Furthermore, this study provides evidence for the important role GKRP plays in acutely regulating of hepatic glucose metabolism.  相似文献   

5.
Indole glucosinolates, present in cruciferous vegetables have been investigated for their putative pharmacological properties. The current study was designed to analyse whether the treatment of the indole glucosinolates—indole-3-carbinol (I3C) and its metabolite 3,3′-diindolylmethane (DIM) could alter the carbohydrate metabolism in high-fat diet (HFD)-induced C57BL/6J mice. The plasma glucose, insulin, haemoglobin (Hb), glycosylated haemoglobin (HbA1c), glycogen and the activities of glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were analysed in liver and kidney of the treated and HFD mice. Histopathological examination of liver and pancreases were also carried out. The HFD mice show increased glucose, insulin and HbA1c and decreased Hb and glycogen levels. The elevated activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase and subsequent decline in the activity of glucokinase and glucose-6-phosphate dehydrogenase were seen in HFD mice. Among treatment groups, the mice administered with I3C and DIM, DIM shows decreased glucose, insulin and HbA1c and increased Hb and glycogen content in liver when compared to I3C, which was comparable with the standard drug metformin. The similar result was also obtained in case of carbohydrate metabolism enzymes; treatment with DIM positively regulates carbohydrate metabolic enzymes by inducing the activity of glucokinase and glucose-6-phosphate dehydrogenase and suppressing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase when compared to I3C, which were also supported by our histopathological observations.  相似文献   

6.
Lithium's effects on rat liver glucose metabolism in vivo   总被引:3,自引:0,他引:3  
Oral administration of lithium carbonate to fed-healthy rats strongly decreased liver glycogen content, despite the simultaneous activation of glycogen synthase and the inactivation of glycogen phosphorylase. The effect seemed to be related to a decrease in glucose 6-phosphate concentration and to a decrease in glucokinase activity. Moreover, in these animals lithium markedly decreased liver fructose 2,6-bisphosphate, which could be a consequence of the fall in glucose 6-phosphate and of the inactivation of 6-phosphofructo-2-kinase. Liver pyruvate kinase activity and blood insulin also decreased after lithium administration. Lower doses of lithium carbonate had less intense effects. Lithium administration to starved-healthy and fed-streptozotocin-diabetic rats caused a slight increase in blood insulin, which was simultaneous with increases in liver glycogen, glucose 6-phosphate, and fructose 2, 6-phosphate. Glucokinase, 6-phosphofructo-2-kinase, and pyruvate kinase activities also increased after lithium administration in starved-healthy and fed-diabetic rats. Lithium treatment activated glycogen synthase and inactivated glycogen phosphorylase in a manner similar to that observed in fed-healthy rats. Glycemia was not modified in any group of animals. These results indicate that lithium acts on liver glycogen metabolism in vivo in at least two different ways: one related to changes in insulinemia, and the other related to the direct action of lithium on the activity of some key enzymes of liver glucose metabolism.  相似文献   

7.
8.
9.
The ingestion of glucose ad libitum (for 19 h to 3 days) decreased the levels of enzymes concerned with amino acid metabolism in liver and intestine (but not in kidney and brain) and raised those of hepatic glucokinase, pyruvate kinase and NADP-malate dehydrogenase.Glucose feeding inhibited the substrate and cortisol induction of tryptophan oxygenase; it did not diminish the induction of tyrosine aminotransferase by glucagon (in adrenalectomized rats) or of renal ornithine aminotransferase by estrogen and it enhanced the response of NADP-malate dehydrogenase to thyroxine. In hepatomas, as opposed to normal liver, 24 h of glucose feeding increased the basal and the cortisol-induced levels of tyrosine aminotransferase.The results obtained with endocrinectomized and hormone-treated rats led to the following conclusions: (1) the effects of glucose ingestion on the quantitative pattern of hepatic enzymes is not mediated through altered secretion of pituitary, adrenal or pancreatic hormones but presumably by metabolites of glucose; (2) glucose, ingested in large amounts over 1–3 days, is not an inhibitor of enzyme inductions in general: its effect varies with the enzyme, the inducer and the tissue in which the enzyme is located.  相似文献   

10.
11.
12.
Hepatic genes crucial for carbohydrate and lipid homeostasis are regulated by insulin and glucose metabolism. However, the relative contributions of insulin and glucose to the regulation of metabolic gene expression are poorly defined in vivo. To address this issue, adenovirus-mediated hepatic overexpression of glucokinase was used to determine the effects of increased hepatic glucose metabolism on gene expression in fasted or ad libitum fed rats. In the fasted state, a 3 fold glucokinase overexpression was sufficient to mimic feeding-induced increases in pyruvate kinase and acetyl CoA carboxylase mRNA levels, demonstrating a primary role for glucose metabolism in the regulation of these genes in vivo. Conversely, glucokinase overexpression was unable to mimic feeding-induced alterations of fatty acid synthase, glucose-6-phosphate dehydrogenase, carnitine palmitoyl transferase I or PEPCK mRNAs, indicating insulin as the primary regulator of these genes. Interestingly, glucose-6-phosphatase mRNA was increased by glucokinase overexpression in both the fasted and fed states, providing evidence, under these conditions, for the dominance of glucose over insulin signaling for this gene in vivo. Importantly, glucokinase overexpression did not alter sterol regulatory element binding protein 1-c mRNA levels in vivo and glucose signaling did not alter the expression of this gene in primary hepatocytes. We conclude that a modest hepatic overexpression of glucokinase is sufficient to alter expression of metabolic genes without changing the expression of SREBP-1c.  相似文献   

13.
The major role of insulin-like growth factor-1 (IGF-1) in the liver is to mediate glucose uptake in hepatocytes to synthesize glycogen and maintain blood glucose homeostasis. In this study, to evaluate the role of IGF-1 on gluconeogenesis and nutrient metabolism in dairy cattle, pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) expression and enzyme activity were evaluated in primary cultures of bovine hepatocytes treated with different concentrations of IGF-1 by quantitative polymerase chain reaction and spectrophotometry, respectively. The results showed that expression of PC and PEPCK were significantly lower in bovine hepatocytes by IGF-1 treatment in test group compare to the control group (P < 0.01). As IGF-1 concentration increased, PC and PEPCK enzyme activity in bovine hepatocytes decreased. Evaluating PC and PEPCK mRNA levels and enzyme activity may thus be useful to monitor subclinical ketosis in dairy cows.  相似文献   

14.
15.
Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4) in skeletal muscle, heart, and adipose tissue (G4Tg) exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT) littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK) activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase) activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ∼115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart, and/or adipose tissue likely positively impact the liver.  相似文献   

16.
Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.  相似文献   

17.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

18.
The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.  相似文献   

19.
20.
Impact of interleukin-6 on the glucose metabolic capacity in rat liver   总被引:1,自引:1,他引:0  
The actute phase reaction mediated by the proinflammatory cytokine IL6 initiates a number of metabolic changes in the liver, which may contribute to the pathogenesis of the septic shock during prolonged exposition. Here, the impact of IL6 on the hepatic glucose providing capacity was studied by monitoring glycogen degradation and the expression of the gluconeogenic phosphoenolpyruvate carboxykinase (PCK1) in rat livers during the daily feeding rhythm. Eight hours after i.p. injection of IL6, mRNA levels of α2-macroglobulin, a prominent acute phase reactant in rat liver, were elevated as shown by Northern blot analysis and in situ hybridization (ISH). PCK1 mRNA levels were decreased by IL6 to 50% of levels in untreated animals due to the reduction of PCK1 mRNA in the periportal zone of the liver as shown by ISH. PCK1 enzyme activity was not affected by IL6. Glycogen degradation was accelerated by IL6, which led to nearly complete depletion of glycogen pools in periportal areas 8 h after IL6 injection. This was very likely due to inhibition of glycogen pool replenishment. Thus, the depletion of glycogen stores in the liver might contribute to the impairment of hepatic glucose production during prolonged acute phase challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号