首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.  相似文献   

2.
3.
4.
5.
6.
Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
9.
Pulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus we hypothesized that there are genes for which expression is altered selectively in the lung in response to alveolar hypoxia. Using a novel subtractive array strategy, we compared gene responses to hypoxia in primary human pulmonary microvascular endothelial cells (HMVEC-L) with those in cardiac microvascular endothelium and identified 90 genes (forming 9 clusters) differentially regulated in the lung endothelium. From one cluster, we confirmed that the bone morphogenetic protein (BMP) antagonist, gremlin 1, was upregulated in the hypoxic murine lung in vivo but was unchanged in five systemic organs. We also demonstrated that gremlin protein was significantly increased by hypoxia in vivo and inhibited HMVEC-L responses to BMP stimulation in vitro. Furthermore, significant upregulation of gremlin was measured in lungs of patients with pulmonary hypertensive disease. From a second cluster, we showed that CXC receptor 7, a receptor for the proangiogenic chemokine CXCL12, was selectively upregulated in the hypoxic lung in vivo, confirming that our subtractive strategy had successfully identified a second lung-selective hypoxia-responsive gene. We conclude that hypoxia, typical of that encountered in pulmonary disease, causes lung-specific alterations in gene expression. This gives new insights into the mechanisms of pulmonary hypertension and vascular loss in chronic lung disease and identifies gremlin 1 as a potentially important mediator of vascular changes in hypoxic pulmonary hypertension.  相似文献   

10.
11.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.  相似文献   

12.
Mycobacteria adapt to a decrease in oxygen tension by entry into a non-replicative persistent phase. It was shown earlier that the two-component system, DevR-DevS, was induced in Mycobacterium tuberculosis and Mycobacterium bovis BCG cultures during hypoxia, suggesting that it may play a regulatory role in their adaptation to oxygen limitation. The presence of a homologous genetic system in Mycobacterium smegmatis was predicted by scanning its unfinished genome sequence with devR and devS genes of M. tuberculosis. Rv3134c, which is cotranscribed with devR-devS in M. tuberculosis, was also present in M. smegmatis at a similar location upstream from devR. The expression of all three genes was induced at the RNA and protein levels in M. smegmatis cultures grown under microaerobic and anaerobic conditions. The M. smegmatis genome also contained the hspX gene, encoding chaperone alpha-crystallin, Acr, that was induced during hypoxia. The similarity in sequences and hypoxia-responsive behaviour of devR-devS, Rv3134c and hspX genes in M. smegmatis and M. tuberculosis suggests that the molecular mechanisms involved in the dormancy response are likely conserved in these two species. M. smegmatis could therefore serve as a useful model for the delineation of the hypoxia response in general and DevR-DevS regulated pathways in particular.  相似文献   

13.
Oxygen deprivation is accompanied by the coordinated expression of numerous hypoxia-responsive genes, many of which are controlled by hypoxia-inducible factor-1 (HIF-1). However, the cellular response to hypoxia is not likely to be mediated by HIF-1 alone, and little is known about HIF-1-independent hypoxia responses. To better establish the molecular mechanisms of HIF-1-independent hypoxia responses, we sought to characterize the molecular basis of the hypoxia response of the hsp-16.1 gene in the nematode Caenorhabditis elegans; this gene has been shown to be induced by hypoxia independently of hif-1. Using affinity purification followed by LC-MS/MS, we identified HMG-1.2 as a protein that binds to a specific promoter region under hypoxic conditions. By systematic prediction followed by validation of these interactions through RNAi, we identified the chromatin modifiers isw-1 and hda-1, histone H4, and NURF-1 chromatin-remodeling factors as new components of the hif-1-independent hypoxia response. These data suggest that the modulation of nucleosome positioning at the hsp-16.1 promoter may be important for the hypoxia response. In addition, we found that calcineurin acts independently of hif-1 to modulate the cellular response to hypoxia and that calcium ions are necessary for the induction of hsp-16.1 under hypoxic conditions.  相似文献   

14.
15.
16.
17.
18.
19.
Acquired resistance in Arabidopsis.   总被引:80,自引:18,他引:62       下载免费PDF全文
Acquired resistance is an important component of the complex disease resistance mechanism in plants, which can result from either pathogen infection or treatment with synthetic, resistance-inducing compounds. In this study, Arabidopsis, a tractable genetic system, is shown to develop resistance to a bacterial and a fungal pathogen following 2,6-dichloroisonicotinic acid (INA) treatment. Three proteins that accumulated to high levels in the apoplast in response to INA treatment were purified and characterized. Expression of the genes corresponding to these proteins was induced by INA, pathogen infection, and salicylic acid, the latter being a putative endogenous signal for acquired resistance. Arabidopsis should serve as a genetic model for studies of this type of immune response in plants.  相似文献   

20.
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号