首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   65篇
  国内免费   1篇
  2023年   3篇
  2021年   15篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   27篇
  2015年   32篇
  2014年   40篇
  2013年   41篇
  2012年   56篇
  2011年   62篇
  2010年   37篇
  2009年   34篇
  2008年   44篇
  2007年   32篇
  2006年   37篇
  2005年   32篇
  2004年   22篇
  2003年   33篇
  2002年   30篇
  2001年   35篇
  2000年   26篇
  1999年   29篇
  1998年   6篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   14篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   8篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1977年   4篇
  1976年   3篇
  1975年   10篇
  1974年   4篇
  1973年   5篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有854条查询结果,搜索用时 125 毫秒
1.
Abstract: Peroxisomal disorders are a newly described group of inherited neurological diseases. In disorders of peroxisomal biogenesis, e.g., Zellweger syndrome, owing to the lack of peroxisomes, catalase, a peroxisomal enzyme, is found to be present in the cytoplasm instead. We observed higher catalase activity (7.59 ± 0.41 mU/mg of protein) in cultured skin fibroblasts from Zellweger patients than in control fibroblasts (4.45 ± 0.29 mU/mg of protein). Moreover, we also found that the majority of the catalase in Zellweger cells was present in the inactive form. The specific activities following reactivation in Zellweger and control cells were 12.1 and 4.9 mU/mg of protein, respectively. To understand the molecular basis of higher levels of catalase in Zellweger than control cells, we examined the rate of synthesis and turnover of catalase and levels of catalase mRNA and protein levels in Zellweger cells as compared with control cells. The initial rates of synthesis of catalase in Zellweger (1.68 ± 0.15 mU/mg of protein) and control (1.51 ± 0.14 mU/mg of protein) cells were similar. The rates of turnover of catalase in Zellweger (t1/2 = 47 ± 8 h) and control (t1/2 = 49 ± 7 h) were also similar. Consistent with the enzyme activity, the levels of catalase protein were higher in Zellweger cells as compared with control cells. On the other hand, there was no difference in the level of catalase mRNA between control and Zellweger cells. Although the rate of synthesis in Zellweger and control cells were initially similar, it was down-regulated to a lower level at ~72 h of culture in control fibroblasts as compared with Zellweger cells, which continued to synthesize catalase at the same rate up to 5 days in culture. The presence of similar levels of mRNA in control and Zellweger cells and continued synthesis of catalase in Zellweger cells at a higher level as compared with control cells suggest a loss of regulation at the translational level.  相似文献   
2.
3.
A series of overlapping cDNAs coding for mouse prothrombin (coagulation factor II) have been isolated and the composite DNA sequence has been determined. The complete prothrombin cDNA is 1,987 bp in length [excluding the poly(A) tail] and codes for 18 bp of 5' untranslated sequence, an open reading frame coding for 618 amino acids, a stop codon, and a 3' untranslated region of 112 bp followed by a poly(A) tail. The translated amino acid sequence predicts a molecular weight of 66,087, which includes 10 residues of gamma-carboxyglutamic acid. There are five potential N-linked glycosylation sites. Mouse prothrombin is 81.4% and 77.3% identical to the human and bovine proteins, respectively. Comparison of the cDNA coding for mouse prothrombin to the human and bovine cDNAs indicates 79.9% and 76.5% identity, respectively. Amino acid residues important for the structure and function of human prothrombin are conserved in the mouse and bovine proteins. In the adult mouse and rat, prothrombin is primarily synthesized in the liver, where is constitutes 0.07% of total mRNA as determined by solution hybridization analysis. The genetic locus for mouse prothrombin, Cf-2, has been mapped using an interspecies backcross and DNA fragment differences between the two species. The prothrombin locus lies on mouse chromosome 2, 1.8 +/- 1.3 map units proximal to the catalase locus. The gene order in this region is Cen-Acra-Cf-2-Cas-1-A-Tel. This localization extends the proximal boundary of the known region of homology between mouse chromosome 2 and human chromosome 11p from Cas-1 about 2 map units toward the centromere.  相似文献   
4.
NADH peroxidase from Streptococcus faecalis 10C1 has been crystallized from ammonium sulfate solutions using the hanging drop vapor diffusion method. Depending on pH, the crystals grew in the orthorhombic space group I222 or one of its subgroups P222 or P2(1)2(1)2 (or one of its two permutations). In both cases the unit cell axes are a = 76.6 A, b = 132.9 A, and c = 145.7 A. There are two monomers/asymmetric unit in the body-centered crystal form and four in the primitive one. The enzyme is catalytically active in the crystalline state. The crystals diffract to at least 2.5 A resolution; they are stable in the x-ray beam and hence suitable for detailed three-dimensional structure determination.  相似文献   
5.
A phosphofructokinase gene was screened and cloned from a human genomic library prepared in the lambda EMBL4 phage vector. DNA sequencing shows that the first exon of this human phosphofructokinase gene is identical in length and highly homologous in sequence to that of a rabbit phosphofructokinase gene. Two amino acid replacements are indicated, an Arg----Lys and a Val----Ile at positions 9 and 13, respectively. Eleven base substitutions, 8 of them silent, are identified. Surprisingly, at ten of these sites, complete bias for A's and T's in the human gene and C's and G's in the rabbit gene are seen. Strong conservation is also observed in the 5' untranslated region and for the first 15 base pairs in the intron. All the nine variant nucleotides in these regions are, again, A's and T's in the human gene and G's and C's in the rabbit gene. The unit evolutionary period of change between the first exon of rabbit and human phosphofructokinase genes is estimated as 2.3 million years at silent sites and 15.6 million years at replacement sites.  相似文献   
6.
7.
We studied the responses of several dyskeratosis congenita (DC) cell lines to the DNA strand-cleaving and base-damaging agent bleomycin. Fibroblasts, peripheral blood lymphocytes, and transformed lymphoblasts of six DC patients and an obligate DC heterozygote showed more chromatid breaks than did respective controls exposed to various concentrations of bleomycin during the G2 phase of the cell cycle (P less than 0.0001). Unsynchronized DC fibroblasts in culture also showed decreased survival, compared to normals, following bleomycin treatment. DC lymphocytes treated with bleomycin for the final 24 h of culture showed more chromatid- and chromosome-type damage than did normals (P less than 0.0001) or G0-treated DC lymphocytes. Spontaneous chromosome breakage was normal in all six DC cell lines. The ability to distinguish affected and heterozygous DC cells without spontaneous chromosome instability from normals on the basis of their bleomycin hypersensitivity provides a marker for future studies of the pathogenesis of this disorder.  相似文献   
8.
9.
Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the ‘Min’ proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.  相似文献   
10.
In an effort to understand the origin of blood-pressure lowering effects observed in recent clinical trials with 11β-HSD1 inhibitors, we examined a set of 11β-HSD1 inhibitors in a series of relevant in vitro and in vivo assays. Select 11β-HSD1 inhibitors reduced blood pressure in our preclinical models but most or all of the blood pressure lowering may be mediated by a 11β-HSD1 independent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号