首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
cis-9-Heptadecenoic acid (CHDA), an antifungal fatty acid produced by the biocontrol agent Pseudozyma flocculosa, was studied for its effects on growth and/or spore germination in fungi. Inhibition of growth and/or germination varied considerably and revealed CHDA sensitivity groups within tested fungi. Analysis of lipid composition in these fungi demonstrated that sensitivity was related primarily to a low intrinsic sterol content and that a high level of unsaturation of phospholipid fatty acids was not as involved as hypothesized previously. Our data indicate that CHDA does not act directly with membrane sterols, nor is it utilized or otherwise modified in fungi. A structural mechanism of CHDA, consistent with the other related antifungal fatty acids produced by P. flocculosa, is proposed in light of its activity and specificity. The probable molecular events implicated in the sensitivity of fungi to CHDA are (i) partitioning of CHDA into fungal membranes; (ii) a variable elevation in fluidity dependent on the buffering capability (sterol content) in fungi; and (iii) higher membrane disorder causing conformational changes in membrane proteins, increased membrane permeability and, eventually, cytoplasmic disintegration.  相似文献   

2.
The antifungal properties of extracellular compounds produced by the epiphytic fungus Sporothrix flocculosa were bioassayed against phytopathogenie fungi on the basis of inhibition of spore germination, and mycelial growth and induction of cellular leakage. Following incubation in stationary culture, S. flocculosa released antifungal metabolites into the culture medium which were extractable with méthylene chloride. When separated by thin layer chromatography, extracted metabolites yielded a compound(s) at Rf0.65 which inhibited development of Cladosporium cucumerinum and several other phytopathogenic fungi. Treatment of Botrytis cinerea and Fusarium oxysporum f.sp. radicis‐lycopersici (FORL) with the same compound(s) greatly reduced spore germination and biomass growth of both fungi. Additionally, both B. cinerea and FORL leaked electrolytes and proteins when grown in presence of the metabolites. Observations under electron microscopy revealed that FORL reacted to the presence of S. flocculosa metabolites by retraction of the plasmalemma and rapid disintegration of the cytoplasm. These reactions were similar to the ones induced by conidia of S. flocculosa when applied on powdery mildew fungi. These results provide strong evidence of the production of antifungal compounds in vivo and of their role in the antagonistic properties of S. flocculosa.  相似文献   

3.
Biological Control of Phytopathogenic Fungi by Fatty Acids   总被引:1,自引:0,他引:1  
Liu S  Ruan W  Li J  Xu H  Wang J  Gao Y  Wang J 《Mycopathologia》2008,166(2):93-102
The aim of the present study was to evaluate the antifungal activity of fatty acids against phytopathogenic fungi. Two pot experiments were conducted by mixing palmitic and oleic acids in the soil in which poor plant growth was observed. In addition, the antifungal activities of nine fatty acids (butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and linoleic acid) against four phytopathogenic fungi: Alternaria solani, Colletotrichum lagenarium, Fusarium oxysporum f. sp. Cucumerinum, and Fusarium oxysporum f. sp. lycopersici, were assessed by measuring mycelial growth and spore germination via Petri dish assay. The results of the pot experiments showed that the mixture of palmitic and oleic acids enhanced the growth of the seedlings of continuous-tomato and continuous-cucumber. Except for oleic acid, in the Petri dish assay, the fatty acids tested were observed to inhibit the mycelial growth of one or more tested fungi. In addition to the suppression of mycelial growth, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, and palmitic acid showed an inhibitory effect against spore germination and the extent of inhibition varied with both the type of fatty acids, and the fungi. In particular, capric acid displayed strong inhibitory effect against C. lagenarium on the mycelial growth and spore germination. The saturated fatty acids, i.e. palmitic acids, showed stronger antifungal activity than the unsaturated fatty acids, i.e. oleic acid. It suggests that fatty acids might be applicable to exploring for alternative approaches to integrated control of phytopathogens.  相似文献   

4.
Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts.  相似文献   

5.
Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts.  相似文献   

6.
Saccharomyces cerevisiae GL7 cells require exogenous sterol and unsaturated fatty acid for growth. When grown in the presence of cholesterol or 7-dehydrocholesterol, the cells incorporated less saturated fatty acid into phospholipids than cells grown with ergosterol, stigmasterol, or beta-sitosterol as the sterol source. This lower saturated fatty acid content was most pronounced in phosphatidylethanolamine, slightly less so in phosphatidylcholine, and least evident in phosphatidylserine and phosphatidylinositol. Growing the cells with the various sterols did not affect the ratios of individual phospholipids. The ability of strain GL7 to use 7-dehydrocholesterol as the only sterol supplement for growth was dependent upon the nature of the unsaturated fatty acids added to the growth medium. In the presence of linoleic, linolenic, or a mixture of palmitoleic and oleic acids, excellent growth was observed with either ergosterol, cholesterol, or 7-dehydrocholesterol. However, when the medium was supplemented with either oleic or petroselenic acid, the cells grew more slowly (oleic) or much more poorly (petroselenic) with 7-dehydrocholesterol than with ergosterol. A specific relationship between sterol structure and membrane fatty acid composition in yeast cells is implied.  相似文献   

7.
Fungi belonging to Pseudozyma spp. represent a small group of yeasts that have drawn limited interest in the scientific literature. However, new research with one species of Pseudozyma, Pseudozyma flocculosa, has demonstrated the potential of this yeast as a biocontrol agent of plant-pathogenic fungi. Based on recent work, it appears that P. flocculosa, a natural inhabitant of the phyllosphere, possesses unique means of defending its ecological niche by producing unusual extracellular fatty acids that are detrimental to, among other fungi, powdery mildews, an important group of plant pathogens. Results from these studies have shown that the fatty acids naturally insert themselves into powdery mildew fungi and cause disorganization of cellular membranes and cell disintegration. Further work with insertional mutagenesis yielded mutants of P. flocculosa that represent valuable biological tools to better understand the properties of the yeast. For instance, preliminary work with mutants having lost their antagonistic properties has led to the isolation of a new metabolite with antifungal activity. Discoveries pertaining to the ecology and mode of action of P. flocculosa may lead to the study of unique metabolic or biological processes in other Pseudozyma spp. that could well release the untapped potential of these misunderstood yeasts.  相似文献   

8.
A fatty acid auxotroph of Candida albicans 6406, designated A' 44 and originally isolated as an oleic acid requiring strain, has been shown to be a delta9 desaturase mutant. Although lacking this step in fatty acid biosynthesis, it appears to retain the ability to desaturate monounsaturated fatty acids. The polyene sensitivity of the organism grown on different fatty acid supplements varied between 0-08 +/- 0-02 and 1-20 +/- 0-30 microgram amphotericin B methyl ester ml-1 for exponentially growing cells. In spite of this variation, the sterol composition remained fairly constant, the major differences lying in fatty acid composition. Stationary-phase cells were more resistant to amphotericin B methyl ester, although again this change was not associated with changes in sterol content. The organism was most resistant when grown in the presence of oleic or linoleic acid. Protoplasts derived from resistant organisms grown on these two fatty acids were also resistant, indicating that the structure of the cell wall was less important than that of the plasma membrane in determining polyene sensitivity under these conditions.  相似文献   

9.
We investigated the growth and the cell lipid composition of the mycelium and of the yeast-like form of Mucor hiemalis VKMF-1431 obtained under aerobic conditions by treatment with the morphogenetic agents itraconazole, exogenous triacylglycerols (TAGs), and trehalose. The sporangiospores of a 20-day culture were inoculated on the medium with glucose. Under these conditions, the fungus produced both mycelium and yeast-like cells. It was established that, upon the germination of old (20-day) sporangiospores, the fungus predominantly used the mycelium development strategy in the presence of trehalose and TAGs. It was characterized by a low ratio between the two bulk membrane lipids (PEA/PC) and increased levels of PC and polyunsaturated fatty acids (FA). Compared to the mycelium, the yeast cell morphotype obtained on the medium with glucose was distinguished by an elevated PEA/PC ratio, lowered TAG, free sterol (FS) and esterified sterol (ES) levels, a decreased ES/FS ratio that correlated with the reserve sterol pool size, and a lowered content of unsaturated fatty acids (the linoleic and the ??-linolenic acid). These peculiarities of the lipid composition of yeastlike cells correlated with the intensity of yeastlike growth. Light and electron microscopy revealed differences between the above cell morphotypes. With itraconazole, yeast-like cells were characterized by the destruction of the endoplasmic reticulum membranes and formation of a large number of vacuoles. The suggestion was confirmed that the state/age of inoculum sporangiospores exerts an influence on the capacity for dimorphism in mucorous fungi such as M. hiemalis. The data obtained testify to an involvement of lipids in the process of adaptation to environmental factors and to their regulatory role in morphogenetic processes associated with the formation of alternative morphotypes of the mucorous fungus.  相似文献   

10.
Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p < or = 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels.  相似文献   

11.
Metabolic studies on isolated mouse skin components were undertaken to determine the specific sites of fatty acid and sterol synthesis. The concentrations of long-chain fatty acids and sterols and the incorporation of radioactivity from acetate-1-(14)C into these lipids are reported for various skin components and intact whole skin. Only fatty acids having chain lengths of 18 carbons or less were produced by the connective tissue cells of the dermis, while fatty acids containing 20 carbons or more, as well as the acids of 18 carbons or less, were synthesized in the upper dermis (papillary reticulum). The upper dermis also produced significant quantities of eicosenoic acid and of an octadecadienoic acid (not linoleic acid), and incorporated labeled acetate into fatty acids containing an odd number of carbons. Removal of the epidermis and adnexa diminished sterol synthesis. However, the upper region of the dermis was capable of synthesizing, from acetate, large quantities of unidentified nonsaponifiable lipids which were neither sterols nor squalene.  相似文献   

12.
The nature of the endogenous reserves of Saccharomyces cerevisiae was examined with respect to conditions of growth, specifically extremes of oxygen tension and carbon source. Cells were grown in batch culture at 30 C under aerobic conditions on a galactose or glucose carbon source and under anaerobic conditions on glucose. The greatest effect of growth conditions on the chemical composition of the cells was on their fatty acid and sterol content.Cells grown under both aerobic and anaerobic conditions mobilised concurrently protein, glycogen, trehalose and fatty acids during a period of 72 hours' starvation under aerobic conditions. The viability of both types of the aerobically grown cells declined to 75% during this period and was not influenced by the initial fatty acid and sterol content of the cells. Cells grown anaerobically showed a more rapid decline in viability which was only 17% after 72 hours' starvation. This loss of viability was not due to a lack of available endogenous reserves but was probably due to an impaired membrane function caused by a deficiency of sterols and unsaturated fatty acids.  相似文献   

13.
Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation.  相似文献   

14.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

15.
In this work, we sought to understand how glycolipid production and the availability of nutrients could explain the ecology of Pseudozyma flocculosa and its biocontrol activity. For this purpose, we compared the development of P. flocculosa to that of a close relative, the plant pathogen Ustilago maydis, under different environmental conditions. This approach was further supported by measuring the expression of cyp1, a pivotal gene in the synthesis of unique antifungal cellobiose lipids of both fungi. On healthy cucumber and tomato plants, the expression of cyp1 remained unchanged over time in P. flocculosa and was undetected in U. maydis. At the same time, green fluorescent protein (GFP) strains of both fungi showed only limited green fluorescence on control leaves. On powdery mildew-infected cucumber leaves, P. flocculosa induced a complete collapse of the pathogen colonies, but glycolipid production, as studied by cyp1 expression, was still comparable to that of controls. In complete contrast, cyp1 was upregulated nine times when P. flocculosa was applied to Botrytis cinerea-infected leaves, but the biocontrol fungus did not develop very well on the pathogen. Analysis of the possible nutrients that could stimulate the growth of P. flocculosa on powdery mildew structures revealed that the complex Zn/Mn played a key role in the interaction. Other related fungi such as U. maydis do not appear to have the same nutritional requirements and hence lack the ability to colonize powdery mildews. Whether production of antifungal glycolipids contributes to the release of nutrients from powdery mildew colonies is unclear, but the specificity of the biocontrol activity of P. flocculosa toward Erysiphales does appear to be more complex than simple antibiosis.  相似文献   

16.
The antifungal mode of action of chitosan has been studied for the last 30 years, but is still little understood. We have found that the plasma membrane forms a barrier to chitosan in chitosan‐resistant but not chitosan‐sensitive fungi. The plasma membranes of chitosan‐sensitive fungi were shown to have more polyunsaturated fatty acids than chitosan‐resistant fungi, suggesting that their permeabilization by chitosan may be dependent on membrane fluidity. A fatty acid desaturase mutant of Neurospora crassa with reduced plasma membrane fluidity exhibited increased resistance to chitosan. Steady‐state fluorescence anisotropy measurements on artificial membranes showed that chitosan binds to negatively charged phospholipids that alter plasma membrane fluidity and induces membrane permeabilization, which was greatest in membranes containing more polyunsaturated lipids. Phylogenetic analysis of fungi with known sensitivity to chitosan suggests that chitosan resistance may have evolved in nematophagous and entomopathogenic fungi, which naturally encounter chitosan during infection of arthropods and nematodes. Our findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitosan.  相似文献   

17.
In order to study the influence of endothelial cell fatty acid composition on various membrane related parameters, several in vitro methods were developed for manipulating the fatty acid content of human endothelial cell membranes. Changes in membrane fatty acid profile were induced by using fatty acid modified lipoproteins or free fatty acids. The largest changes in endothelial fatty acid composition were obtained by culturing the cells in media supplemented with specific free fatty acids. An increase in arachidonic acid content of endothelial phospholipids was induced by supplementation with saturated fatty acids or with arachidonic acid itself. A decrease in arachidonic acid content was obtained by supplementation with other unsaturated fatty acids. Under the experimental conditions used endothelial cells showed a low desaturase activity and a high elongase activity. Considerable alterations in membrane fatty acid composition did not greatly influence certain membrane related parameters such as polymorphonuclear leukocyte adherence and endothelial cell procoagulant activity. In general, for fatty acid modified endothelial cells an association between endogenous arachidonic acid content and total production of eicosanoids was found. This study demonstrates that considerable changes in membrane fatty acid profile affect endothelial cell arachidonic acid metabolism, but it also illustrates homeostasis at the level of endothelial cell functional activity.  相似文献   

18.
Seeds of Norway maple ( Acer platanoides L.) differing in water content (10, 20 and 30%) were stored for 6 weeks at 20 to 30°C. During this period changes in phospholipids and fatty acids as well as in seed viability and germination capacity were studied. A considerable decrease in the phospholipid content was observed, which depended on the water content in the seeds and was related to the decrease of the seed germination capacity. The level of linoleic (18:2) and linolenic (18:3) acids in the phospholipid fraction decreased considerably in the course of the accelerated seed ageing. The results obtained suggest that phospholipid degradation and peroxidation of unsaturated fatty acids, followed by membrane destruction, play a considerable role in maple seed ageing.  相似文献   

19.
Modifications of plasma membrane acyl-linked phospholipid fatty acid composition were produced by supplementing the culture medium with essential fatty acids. The plasma membrane fraction was purified by Percoll gradient centrifugation from dissociated fetal rat brain cells grown in a serum-free culture medium. Both the concentration dependence and the time course of the modifications were examined. Supplementation of the medium with essential polyunsaturated fatty acid, linolenic acid (18:3 omega 3) or linoleic acid (18:2 omega 6), produced incorporation of the elongated and desaturated products of omega 3 or omega 6 class, respectively, i.e., the incorporation was class specific. Within each class, the most unsaturated and elongated members, i.e., terminal members, were preferentially incorporated until they reached a maximum concentration within 6-7 days. At higher concentrations of supplemented fatty acids, additional class specific incorporation in plasma membrane was produced by an increase in the concentration of intermediate members. At the same time, the concentration of monounsaturated fatty acids declined and that of saturated fatty acids remained unchanged. The modifications in fatty acid composition were reversible, with the time course similar to that of incorporation. The total plasma membrane phospholipid and sterol contents did not change with alterations of fatty acid composition, but did change with time in culture. This preparation should prove useful for investigating the role of polyunsaturated fatty acids in brain cell functions, including neuronal excitability.  相似文献   

20.
The fatty acid composition of human skin fibroblasts grown in 10% dialyzed fetal calf serum can be modified considerably by adding supplemental fatty acids to the culture medium. The degree of modification was dependent on the concentration of added fatty acid over the range tested, 2.5 X 10(-5) to 1 X 10(-4) M. At the higher concentration, the extent of the modifications was as those which can be produced in nonhuman or malignant cell lines. Although the greatest changes were produced in the neutral lipid fraction, the cellular phospholipids also exhibited appreciable modifications. The phospholipids isolated from a microsomal fraction prepared from the cell homogenate exhibited similar changes in fatty acyl composition. These findings indicate that the human fibroblast can tolerate considerable variability in fatty acid composition, even in membrane phospholipids. The triglyceride content of the cells increased when they were grown in the presence of added fatty acids, but the phospholipid and cholesterol content remained unchanged. Growth was not affected by either oleic or linoleic acids, but it was reduced up to 50% when palmitic linolenic, or arachidonic acid was added in concentrations of 5 X 10(-5) M or above. Extensive modifications in phospholipid fatty acid composition also were produced in confluent monolayers of these fibroblasts. This suggest that some membrane lipid turnover occurs even when the cultures are not rapidly growing. Fatty acid modifications also were produced in the commercially available IMR-90 strain of human lung fibroblasts, suggesting that the ability to tolerate considerable differences in fatty acid composition is not a special property of the skin fibroblast line that was isolated locally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号