首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究种子同化物卸出的微注射法和空种皮杯法   总被引:1,自引:0,他引:1  
MicroinjectionTechniqueandEmptySeedCoatTechniquefortheStudyofAssimilateUnloadinginSeedsDAIYu-Ling,ZHANGShu-Qiu,YANGShi-Jie,LOUCheng-Hou(CollegeofBiologicalScinces,ChinaAgriculturalUniversity,Beijing100094)对光合同化物卸出的研究,常采用一些间接方法如标记C引入、放射自显影等来显示同化物的分配。发育的大豆种子、胚和种皮间没有共质体联系,从茎叶运来的同化物先从种皮卸出到包围幼胚的质外体空间,再被幼胚吸收,是一种研究同化物卸出的好材料。1983年,美国的Thorne和Rainbird[3]用大豆、…  相似文献   

2.
植物体内光合同化物韧皮部装载和卸出研究进展   总被引:2,自引:0,他引:2  
近年来研究表明,植物体内光合同化物的韧皮部装载和卸出均有其本途径和质外体途径,装载转运的糖类主要有:(2)棉子糖及其人类似物(以共质体方式装载);(2)蔗糖(以质外体方式装载)。同化物的共质体卸出可通过扩散和集中作用实现,而质外体卸出则根据蔗糖在质外体是否水解而分为两种类型。卸出和装载的途径、机理因植物种类及库源关系而不同,也会受生长发育阶段及环境的变化而调整。深入研究韧皮部装载和帛出调控机制,对  相似文献   

3.
章英才  景红霞 《西北植物学报》2014,34(12):2446-2452
采用ATPase超微细胞化学定位技术,研究灵武长枣果实不同发育阶段韧皮部和果肉库薄壁细胞ATPase分布特征,以明确灵武长枣果实ATPase超微细胞化学定位特征和功能。结果显示:(1)第一次快速生长期SE/CC复合体与周围的薄壁细胞有丰富的胞间连丝,形成共质体连续,韧皮部薄壁细胞之间有丰富的胞间连丝,ATPase反应物在韧皮部各细胞分布较少。(2)缓慢生长期ATPase反应物在韧皮部各细胞分布逐渐增加。(3)第二次快速生长期SE/CC复合体与周围的薄壁细胞缺乏胞间连丝,形成共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,质膜、液泡膜、囊泡膜、细胞壁和胞间隙的ATPase活性较高。研究表明,果实在第一次快速生长期同化物从筛分子的卸出主要采取共质体途径,缓慢生长期同化物卸出时可能为共质体和质外体途径共存,第二次快速生长期则主要以质外体途径为主,证明果实不同发育阶段韧皮部同化物卸出路径存在差异。  相似文献   

4.
通过缩小叶面积和去茎尖改变源库比率,以调节韧皮部卸出的途径,证明了韧皮部卸出的共质体与质外体途径的季节变化,和由对氯高汞苯磺酸所诱发的从质外体向共质体途径的转变,是与光合产物的输入有关。缩小叶面积而降低源库比率,能增加夏季生长植株茎韧皮部的质外体卸出,但对冬季生长植株无影响。去尖而增加源库比率,则促进共质体卸出。赤霉酸和激动素能促进共质体的横向转运,但对质外体转运无作用。当质外体为主要运输途径时,赤霉酸和激动素开启共质体途径。赤霉酸和激动素刺激光合产物,通过共质体从筛管一伴胞复合体向韧皮部薄壁纽胞输送,并可能在韧皮部薄壁细胞被动扩散到自由空间。由此可进一步说明蔗糖在激素处理部位自由空间的增加。  相似文献   

5.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析。结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴胞复合体及其与周围薄壁细胞间在果实快速膨大期也存在胞间连丝,但与果实膨大前期相比明显减少;果实着色期,SE/CC复合体及其与周围薄壁细胞间胞间连丝较少,并且出现阻塞现象;果实完熟期,筛管和伴胞之间几乎没有胞间连丝,有的筛管之间有少量胞间连丝,但却出现了阻塞现象,果肉库薄壁细胞与韧皮薄壁细胞间因胞间连丝阻塞现象而形成共质体隔离。综上结果认为,在果实发育的膨大前期阶段,光合同化物以共质体途径经筛分子卸出,卸出后可能以质外体途径进入液泡贮藏与利用;果实快速膨大期,光合同化物的卸出与运输采用共质体和质外体共存的途径;果实着色期和完熟期,光合同化物从筛分子卸出到贮藏薄壁细胞的运输均以质外体途径为主。  相似文献   

6.
章英才  海源  黄月  张媛 《西北植物学报》2020,40(12):2054-2064
韧皮部卸载和韧皮部后运输在调节同化物在果实中的分配和积累方面起着至关重要的作用,而且很大程度上决定着果实的产量和质量。为探讨灵武长枣果实同化物韧皮部卸载和运输途径,以4个时期灵武长枣果实为实验材料,对各个发育时期果实维管束的显微结构进行观察,并综合运用荧光染料活细胞示踪与激光共聚焦扫描显微镜技术实时观察果实内韧皮部同化物卸载路径的变化,为灵武长枣果实同化物积累和品质调控奠定基础。结果显示:(1)膨大前期不仅果实的韧皮部中具有明显的CF绿色荧光,同时在周围薄壁细胞中也分布着CF绿色荧光,筛管伴胞复合体和周围薄壁细胞之间存在着共质体联系。(2)快速膨大期,CF绿色荧光主要局限于果实的韧皮部中,在韧皮部周围薄壁细胞中分布较少,筛管伴胞复合体与周围薄壁细胞之间主要以共质体隔离为主,但也存在着一定的共质体联系。(3)着色期和完熟期,CF绿色荧光局限于果实的韧皮部中,在韧皮部周围薄壁细胞中基本没有CF绿色荧光,果实筛管伴胞复合体与周围薄壁细胞之间是共质体隔离状态,但引入CFDA的同时引入具有质膜通透作用的洋地黄皂苷时,周围薄壁细胞中CF绿色荧光分布明显增加。研究认为,灵武长枣在膨大前期果实韧皮部同化物为共质体卸载途径,快速膨大期果实主要以质外体途径运输同化物,但也通过共质体卸出同化物,着色期和完熟期果实通过质外体途径运输同化物。  相似文献   

7.
运用常规ATP酶超微细胞化学定位技术,对宁夏枸杞果实发育不同阶段的韧皮部和果肉库薄壁细胞ATP酶分布进行了观察研究.结果显示,在果实发育过程中SE/CC复合体与周围韧皮薄壁细胞间存在共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,但是与果肉库薄壁细胞相邻的韧皮薄壁细胞的胞间连丝较多.囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,并且质膜、囊泡膜、液泡膜上ATP酶沉淀物在韧皮部各细胞分布较少,在果肉库薄壁细胞分布较多,特别是在果实第二次快速生长期,果肉库薄壁细胞膜系统、细胞壁和胞间隙的ATP酶活性剧烈增强.此外,果肉库薄壁细胞的质膜ATP酶具极性分布特点.由此得出,枸杞果实韧皮部卸载是一种需要能量驱动的过程,其卸载途径主要以质外体途径为主,在从韧皮部向果肉库薄壁细胞卸出时可能为共质体和质外体途径共存.膜泡运输是枸杞果实同化物卸出和转运的重要方式,而韧皮薄壁细胞在同化物卸出和转运过程中承担了主要转运角色;果肉库薄壁细胞进行主动和定向卸载、积累同化物的能力很强.  相似文献   

8.
脱落酸对植物库强度的调节作用   总被引:11,自引:0,他引:11  
脱落酸对植物库强度表现促进作用.这种作用与脱落酸促进同化物从韧皮部的卸出、库细胞对同化物的吸收以及同化物在库细胞内的代谢转化有关。文中讨论了脱落酸此类作用的可变性。  相似文献   

9.
小麦离体颖果饲喂~14CO_2后,经冷冻取代,于膜显微放射性自显影,追踪与检查了包括可溶性糖在内的~14C标记同化物在胚珠内的分配与定位。颖果绿色层细胞的高光合效率不仅保证了同化物的即时输出,而且还可以淀粉形式暂贮在叶绿体内。绿色层光合产物主要向腹沟处汇集,通过该处的维管束与珠心突起向胚乳方向迁移。~14C标记同化物以逆浓差梯度方式从珠心向珠心—胚乳交界处质外体空间输出并在胚乳内呈不均匀分布和富集于原胚端活跃增殖生长的区段内。绿色层同化物以多种方式进入原胚,主要以可溶态形式存在。同化物可能通过珠孔直接就近为原胚吸收。  相似文献   

10.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

11.
Cytological observations were made on developing seed coat of broad bean (Vicia faba L.) by use of light and electron microscopy. Attention was focused on vascular distribution. The seeds were attached by the funiculus to tile large vascular bundles of pericarp of broad bean. The vascular bundle passed through hilum and two layers of palisade, entered the pa- renchyma of seed coat, then diverged in to two routes. One was a complete vascular bundle composed of both'phloem and xylem elements, it stretched down through seed raphe, then upward and terminated near the radical. The other was a two-recurrent-vascular-bundle with only phloem constitutents, they extended forward detoured the micropyle and extended downward, but did not join with the upward complete vascular bundle. The recurrent vascular bundles branched out many small short branches. The obvious difference between phloem of recurrent vascular bundle and of complete vascular bundle was that the companion ceils of the former did not normally modify to transfer ceils, but connected to the adjoining parenchyma cells through abundant plasmodesmata. It is deduced from the structural analysis that the symplastic route may play an important role, particularly in the region of recurrent vascular bundle, in the course of importing assimilates unloading in seed coat and transporting to the embryo.  相似文献   

12.
Summary Autoradiographic and microautoradiographic studies of 2-year-old Picea abies plants show that in summer leaf assimilates from the second-year shoot are translocated basipetally. Leaf assimilates are first transported to the stem via leaf trace phloem, then to the base of the stem in the sieve cells of the latest increment of secondary phloem. On the way down leaf assimilates move radially from sieve cells into cells of the phloem parenchyma, the vascular cambium, the rays, the inner periderm and certain cells of pith and cortex, including the epithelial cells surrounding the resin ducts. Other cells of pith and cortex remain nearly free of label, despite the long translocation time (20 h). With the exception of the vascular cambial cells, the stem cells that gain leaf assimilates by radial distribution coincide with those that contain chlorophyll and starch.  相似文献   

13.
Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H+ symporter gene. Analyses of the AtSUC2 promoter-GFP plants demonstrated that the 27-kD GFP protein can traffic through plasmodesmata from companion cells into sieve elements and migrate within the phloem. With the stream of assimilates, the GFP is partitioned between different sinks, such as petals, root tips, anthers, funiculi, or young rosette leaves. Eventually, the GFP can be unloaded symplastically from the phloem into sink tissues, such as the seed coat, the anther connective tissue, cells of the root tip, and sink leaf mesophyll cells. In all of these tissues, the GFP can traffic cell to cell by symplastic post-phloem transport. The presented data show that plasmodesmata of the sieve element-companion cell complex, as well as plasmodesmata into and within the analyzed sinks, allow trafficking of the 27-kD nonphloem GFP protein. The data also show that the size exclusion limit of plasmodesmata can change during organ development. The results are also discussed in terms of the phloem mobility of assimilates and of small, low molecular weight companion cell proteins.  相似文献   

14.
K. J. Oparka  P. Gates 《Planta》1981,151(6):561-573
Assimilates entering the developing rice caryopsis traverse a short-distance pathway between the terminal sieve elements of the pericarp vascular bundle and the aleurone layer. The ultrastructure of this pathway has been studied. Sieve elements in the pericarp vascular bundle are smaller than their companion cells.The sieve elements show few connections with surrounding vascular parenchyma elements but are connected to companion cells by compound plasmodesmata. Companion cells, in turn, are connected to vascular parenchyma elements by numerous compound plasmodesmata present in wall thickenings. Assimilates leaving the sieve element — companion cell complex must laterally traverse cells of the pigment strand before they come into contact with the aleurone layer. The pigment strand cells have modified inner walls made up of a suberin-like material. This material may act as a permeability barrier isolating the apoplast from the symplast of the pigment strand. The walls of the pigment strand cells are traversed by numerous plasmodesmata. Water may be conducted to the endosperm through the isolated cell-wall system of the pigment strand while assimilates possibly move via plasmodesmata. High frequencies of plasmodesmata occur at the junction between the pigment strand and the nucellus and also between adjacent cells of the nucellus. By contrast, plasmodesmata are absent between the nucellus and the aleurone layer and also between the nucellus and the seed coat. A predominantly circumferential and symplastic transport pathway is likely between the pigment strand and nucellus. In view of the total absence of plasmodesmata between the nucellus and the aleurone layer assimilates entering the endosperm may have to cross the plasmalemma of the nucellus. It is possible that constraints to the flow of assimilates may occur in the short-distance pathway between the terminal sieve element — companion cell complexes and the endosperm, and this is discussed.  相似文献   

15.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:3,自引:0,他引:3  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1-2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

16.
芦荟叶内芦荟素细胞的发育和蒽醌类物质的积累   总被引:11,自引:0,他引:11  
应用石蜡切片、半薄切片、组织化学和荧光显微镜观察相结合的方法研究了木立芦荟叶内芦荟素细胞的发生、发育以及其蒽醌类物质的积累过程。结果表明,在叶内原形成层束分化成维管束初期,原形成层束外侧的一层细胞发育成维管束鞘。原生韧皮部筛管产生时,其外方尚保留1—2层原形成层细胞,当后生韧皮部和木质部开始分化时,此层细胞分裂。在后生韧皮部和木质部发育成熟过程中,这些细胞体积逐渐增大,并液泡化,发育成为大型薄壁细胞(芦荟素细胞),位于筛管外侧。据此,芦荟叶维管束内的大型薄壁细胞的来源与韧皮部相同,属于特化的韧皮部薄壁组织细胞。用醋酸铅处理过的上述材料的切片观察表明,芦荟素细胞在细胞体积增大,并液泡化时,在液泡内出现蒽醌类物质沉淀物,在成熟细胞的大液泡中充满沉淀物,此时,在荧光显微镜下芦荟素细胞发出桔黄色荧光。可见,此种芦荟素细胞是芦荟叶内蒽醌类物质的主要储存场所。  相似文献   

17.
Liesche J  Martens HJ  Schulz A 《Protoplasma》2011,248(1):181-190
Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms.  相似文献   

18.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

19.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

20.
Summary Only one or two layers of sieve cells of the previous year's phloem in lateral branches of Larix decidua persist as fully mature cells. Immature sieve cells or cambial derivatives that have not completed differentiation may also over-winter. Periclinal cell divisions of the vascular cambium were first observed by mid-April. During the short period of greatest cambium activity (mid-April to mid-May), the early phloem is laid down. Late phloem is formed over a much longer period, from mid-May to late September. Microautoradiography revealed that only mature sieve cells of the early phloem are involved in translocation of 14C assimilates in June. The fine structure of actively translocating sieve cells is described. The impact of structure on long-distance transport of assimilates is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号