首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human translationally controlled tumor protein (TCTP) is a growth-related, calcium-binding protein. We determined the solution structure and backbone dynamics of human TCTP, and identified the calcium-binding site of human TCTP using multi-dimensional NMR spectroscopy. The overall structure of human TCTP has a rather rigid well-folded core and a very flexible long loop connected by a short two-strand β-sheet, which shows a conserved fold in the TCTP family. The C-terminal portions of loop Lα3β8 and strand β9 and the N-terminal region of strand β8 may form a calcium-binding site in the human TCTP structure, which is largely conserved in the sequence alignment of TCTPs. The Kd value for the calcium binding is 0.022-0.025 M indicating a very weak calcium-binding site.  相似文献   

2.
Recent work has revealed that the association of a disordered region of a protein with a folded binding partner can occur as rapidly as association between two folded proteins. This is the case for the phosphatase calcineurin (CaN) and its association with its activator calmodulin. Calmodulin binds to the intrinsically disordered regulatory domain of CaN. Previous studies have shown that electrostatic steering can accelerate the binding of folded proteins with disordered ligands. Given that electrostatic forces are strong determinants of disordered protein ensembles, the relationship between electrostatics, conformational ensembles, and quaternary interactions is unclear. Here, we employ experimental approaches to explore the impact of electrostatic interactions on the association of calmodulin with the disordered regulatory region of CaN. We find that estimated association rate constants of calmodulin with our chosen calmodulin-substrates are within the diffusion-limited regime. The association rates are dependent on the ionic strength, indicating that favorable electrostatic forces increase the rate of association. Further, we show that charged amino acids outside the calmodulin-binding site modulate the binding rate. Conformational ensembles obtained from computer simulations suggest that electrostatic interactions within the regulatory domain might bias the conformational ensemble such that the calmodulin binding region is readily accessible. Given the prevalence of charged residues in disordered protein chains, our findings are likely relevant to many protein-protein interactions.  相似文献   

3.
The inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear. Here, we determined the conformational ensemble of INCENP’s IDR, systematically varying the level of phosphorylation, using all-atom and coarse-grain molecular dynamics simulations. Our simulations show that phosphorylation expands INCENP’s IDR, both locally and globally, mainly by increasing its overall net charge. The disordered region undergoes critical globule-to-coil conformational transitions and the transition temperature non-monotonically depends on the degree of phosphorylation, with a mildly phosphorylated case of neutral net charge featuring the highest collapse propensity. The IDR transitions from a multitude of globular states, accompanied by several specific internal contacts that reduce INCENP length by loop formation, to weakly interacting and highly extended coiled conformations. Phosphorylation critically shifts the population between these two regimes. It thereby influences cohesiveness and phase behavior of INCENP IDR assemblies, a feature presumably relevant for INCENP’s function in the chromosomal passenger complex. Overall, we propose the disordered region of INCENP to act as a phosphorylation-regulated and length-variable component, within the previously defined “dog-leash” model, that thereby regulates how Aurora B reaches its targets for proper chromosome segregation.  相似文献   

4.
Paramagnetic relaxation enhancement (PRE) is a powerful technique for studying transient tertiary organizations of unfolded and partially folded proteins. The heterogeneous and dynamic nature of disordered protein states, together with the r−6 dependence of PRE, presents significant challenges for reliable structural interpretation of PRE-derived distances. Without additional knowledge of accessible conformational substates, ensemble-simulation-based protocols have been used to calculate structure ensembles that appear to be consistent with the PRE distance restraints imposed on the ensemble level with the proper r−6 weighting. However, rigorous assessment of the reliability of such protocols has been difficult without intimate knowledge of the true nature of disordered protein states. Here we utilize sets of theoretical PRE distances derived from simulated structure ensembles that represent the folded, partially folded and unfolded states of a small protein to investigate the efficacy of ensemble-simulation-based structural interpretation of PRE distances. The results confirm a critical limitation that, due to r−6 weighting, only one or a few members need to satisfy the distance restraints and the rest of the ensemble are essentially unrestrained. Consequently, calculated structure ensembles will appear artificially heterogeneous no matter whether the PRE distances are derived from the folded, partially unfolded or unfolded state. Furthermore, the nature of the heterogeneous ensembles is largely determined by the protein model employed in structure calculation and reflects little on the true nature of the underlying disordered state. These findings suggest that PRE measurements on disordered protein states alone generally do not contain enough information for a reliable structural interpretation and that the latter will require additional knowledge of accessible conformational substates. Interestingly, when a very large number of PRE measurements is available, faithful structural interpretation might be possible with intermediate ensemble sizes under ideal conditions.  相似文献   

5.
Many intrinsically disordered proteins switch between unfolded and folded-like forms in the presence of their binding partner. The possibility of a pre-equilibrium between the two macrostates is challenging to discern given the complex conformational landscape. Here, we show that CytR, a disordered DNA-binding domain, samples a folded-like excited state in its native ensemble through equilibrium multi-probe spectroscopy, kinetics and an Ising-like statistical mechanical model. The population of the excited state increases upon stabilization of the native ensemble with an osmolyte, while decreasing with increasing temperatures. A conserved proline residue, the mutation of which weakens the binding affinity to the target promoter, is found to uniquely control the population of the minor excited state. Semi-quantitative statistical mechanical modeling reveals that the conformational diffusion coefficient of disordered CytR is an order of magnitude slower than the estimates from folded domains. The osmolyte and proline mutation smoothen and roughen up the landscape, respectively, apart from modulation of populations. Our work uncovers general strategies to probe for excited structured states in disordered ensembles, and to measure and modulate the roughness of the disordered landscapes, inter-conversion rates of species and their populations.  相似文献   

6.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

7.
The protein folding problem was apparently solved recently by the advent of a deep learning method for protein structure prediction called AlphaFold. However, this program is not able to make predictions about the protein folding pathways. Moreover, it only treats about half of the human proteome, as the remaining proteins are intrinsically disordered or contain disordered regions. By definition these proteins differ from natively folded proteins and do not adopt a properly folded structure in solution. However these intrinsically disordered proteins (IDPs) also systematically differ in amino acid composition and uniquely often become folded upon binding to an interaction partner. These factors preclude solving IDP structures by current machine-learning methods like AlphaFold, which also cannot solve the protein aggregation problem, since this meta-folding process can give rise to different aggregate sizes and structures. An alternative computational method is provided by molecular dynamics simulations that already successfully explored the energy landscapes of IDP conformational switching and protein aggregation in multiple cases. These energy landscapes are very different from those of ‘simple’ protein folding, where one energy funnel leads to a unique protein structure. Instead, the energy landscapes of IDP conformational switching and protein aggregation feature a number of minima for different competing low-energy structures. In this review, I discuss the characteristics of these multifunneled energy landscapes in detail, illustrated by molecular dynamics simulations that elucidated the underlying conformational transitions and aggregation processes.  相似文献   

8.
9.
10.
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all‐atom molecular dynamics simulations to study how gradual shortening a very long or solvent‐exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. Proteins 2015; 83:2137–2146. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Under native conditions, apocytochrome b(5) exhibits a stable core and a disordered heme-binding region that refolds upon association with the cofactor. The termini of this flexible region are in close proximity, suggesting that loop closure may contribute to the thermodynamic properties of the apocytochrome. A chimeric protein containing 43 residues encompassing the cytochrome loop was constructed using the cyanobacterial photosystem I accessory protein E (PsaE) from Synechococcus sp. PCC 7002 as a structured scaffold. PsaE has the topology of an SH3 domain, and the insertion was engineered to replace its 14-residue CD loop. NMR and optical spectroscopies showed that the hybrid protein (named EbE1) was folded under native conditions and that it retained the characteristics of an SH3 domain. NMR spectroscopy revealed that structural and dynamic differences were confined near the site of loop insertion. Variable-temperature 1D NMR spectra of EbE1 confirmed the presence of a kinetic unfolding barrier. Thermal and chemical denaturations of PsaE and EbE1 demonstrated cooperative, two-state transitions; the stability of the PsaE scaffold was found only moderately compromised by the insertion, with a DeltaT(m) of 8.3 degrees C, a DeltaC(m) of 1.5 M urea, and a DeltaDeltaG degrees of 4.2 kJ/mole. The data implied that the penalty for constraining the ends of the inserted region was lower than the approximately 6.4 kJ/mole calculated for a self-avoiding chain. Extrapolation of these results to cytochrome b(5) suggested that the intrinsic stability of the folded portion of the apoprotein reflected only a small detrimental contribution from the large heme-binding domain.  相似文献   

12.
p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)‐binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the “activating” C‐terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked‐immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild‐type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the “unfolded” conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.  相似文献   

13.
14.
The C-terminal domain (CTD) of tumour suppressor p53 is an intrinsically disordered protein which has been shown to be able to bind multiple partner proteins and exercise diverse physiological functions in the cell. In this study, we performed molecular dynamics simulations on the isolated p53 CTD, as well as three regulatory binding complexes to investigate the conformational ensemble of isolated p53 CTD and its dynamic structures when different binding partner present. The results demonstrate that the isolated p53 CTD resembles a molten globule rather than extended structure. It mainly adopts random coil conformations with some tendency to form helical structures, which is consistent with experimental observations. For isolated p53 CTD, the dynamics is exclusively dominated by the intrinsic free energy and the p53 CTD could not folded spontaneously to each binding competent state which is located in high free energy region. However, when the binding partners present, the dynamics of p53 CTD are dominated by two mechanisms, the p53 CTD tending to adopt the structure with minimum free energy as isolate existed and the binding energy from partner protein tending to minimum. Each of them has an extreme tendency and corresponds to a possible characteristic state, the random coil state and each binding competent state. The compromise in competition between these two mechanisms results in alternate realisation of different characteristic states, while the relative strength of each mechanism determines the sampling frequency of each characteristic state.  相似文献   

15.
利用p53蛋白质核心区晶体结构作分子动力学发现,除了生化方面的稳定性之外,该区还具有分子力学上的高度稳定性.在此基础上作的R249残基替换分子动力学研究显示,p53蛋白质核心区249位点精氨酸被其他残基替换后能引起p53蛋白质核心区L2、L3结构域间的密切联系趋于松散,正常的空间构象发生改变并使整个核心区结构稳定性受到破坏.这一研究从三维结构变化上,直观地解释了R249残基替换造成的p53蛋白质免疫和生化特性改变的结构机制.  相似文献   

16.
BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3‐kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled‐coil domain (CCD); and a β‐α‐repeated autophagy‐specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post‐translational modifications. A better structure‐based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post‐translational modifications will be essential to elucidating the mechanism of its multiple biological roles.  相似文献   

17.
Abstract

Phosphorylation of protein is critical for various cell processes, which preferentially happens in intrinsically disordered proteins (IDPs). How phosphorylation modulates structural ensemble of disordered peptide remains largely unexplored. Here, using replica exchange molecular dynamics (REMD) and Markov state model (MSM), the conformational distribution and kinetics of p53 N-terminal transactivation domain (TAD) 2 as well as its dual-site phosphorylated form (pSer46, pThr55) were simulated. It reveals that the dual phosphorylation does not change overall size and secondary structure element fraction, while a change in the distribution of hydrogen bonds induces slightly more pre-existing bound helical conformations. MSM analysis indicates that the dual phosphorylation accelerates conformation exchange between disordered and order-like states in target-binding region. It suggests that p53 TAD2 after phosphorylation would be more apt to bind to both the human p62 pleckstrin homology (PH) domain and the yeast tfb1?PH domain through different binding mechanism, where experimentally it exhibits an extended and α-helix conformation, respectively, with increased binding strength in both complexes. Our study implies except binding interface, both conformation ensemble and kinetics should be considered for the effects of phosphorylation on IDPs. Abbreviations IDPs intrinsically disordered proteins

REMD replica exchange molecular dynamics

MSM Markov state model

TAD transactivation domain

PH pleckstrin homology

PRR proline-rich region

DBD DNA-binding domain

TET Tetramerization domain

REG regulatory domain

MD molecular dynamics

PME particle-mesh Ewald

TICA time-lagged independent component analysis

CK Chapman–Kolmogorov

GMRQ generalized matrix Rayleigh quotient

SARW self-avoiding random walk

KID kinase-inducible domain

MFPT mean first passage time

DSSP definition of secondary structure of proteins

RMSD root mean square deviation

Rg radius of gyration

Ree end to end distance

Communicated by Ramaswamy H. Sarma  相似文献   

18.
SH Lee  EJ Cha  JE Lim  SH Kwon  DH Kim  H Cho  KH Han 《Molecules and cells》2012,34(2):165-169
The hepatitis B virus x protein (HBX) is expressed in HBVinfected liver cells and can interact with a wide range of cellular proteins. In order to understand such promiscuous behavior of HBX we expressed a truncated mini-HBX protein (named Tr-HBX) (residues 18-142) with 5 Cys → Ser mutations and characterized its structural features using circular dichroism (CD) spectropolarimetry, NMR spectroscopy as well as bioinformatics tools for predicting disorder in intrinsically unstructured proteins (IUPs). The secondary structural content of Tr-HBX from CD data suggests that Tr-HBX is only partially folded. The protein disorder prediction by IUPred reveals that the unstructured region encompasses its N-terminal ~30 residues of Tr-HBX. A two-dimensional (1)H-(15)N HSQC NMR spectrum exhibits fewer number of resonances than expected, suggesting that Tr-HBX is a hybrid type IUP where its folded C-terminal half coexists with a disordered N-terminal region. Many IUPs are known to be capable of having promiscuous interactions with a multitude of target proteins. Therefore the intrinsically disordered nature of Tr-HBX revealed in this study provides a partial structural basis for the promiscuous structure-function behavior of HBX.  相似文献   

19.
Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP.  相似文献   

20.
There are a large number of protein domains and even entire proteins, lacking ordered structure under physiological conditions. Intriguingly, a highly flexible, random coil-like conformation is the native and functional state for many proteins known to be involved in cell signaling. An example is a key component of immune signaling, the cytoplasmic region of the T cell receptor zeta subunit. This domain exhibits specific dimerization that is distinct from non-specific aggregation behavior seen in many systems. In this work, we use diffusion and chemical shift mapping NMR data to show that the protein does not undergo a transition between disordered and ordered states upon dimerization. This finding opposes the generally accepted view on the behavior of intrinsically disordered proteins, provides evidence for the existence of specific dimerization interactions for intrinsically disordered protein species and opens a new line of research in this new and quickly developing field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号