首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1996年   1篇
  1993年   3篇
  1987年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Many regulatory proteins are homo‐oligomeric and designing assays that measure self‐assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer‐associated oncoprotein AGR2. A two site‐sandwich microtiter assay (2SMTA) was designed using a DyLight800‐labeled monoclonal antibody that binds to an epitope in AGR2 to screen for synthetic self‐peptides that might regulate dimer stability. Peptides derived from the intrinsically disordered N‐terminal region of AGR2 increase in trans oligomer stability as defined using the 2SMTA assay. A DSS‐crosslinking assay that traps the AGR2 dimer through K95‐K95 adducts confirmed that Δ45‐AGR2 was a more stable dimer using denaturing gel electrophoresis. A titration of wt‐AGR2, Δ45‐AGR2 (more stable dimer), and monomeric AGR2E60A revealed that Δ45‐AGR2 was more active in binding to Reptin than either wt‐AGR2 or the AGR2E60A mutant. Our data have defined a functional role for the AGR2 dimer in the binding to its most well characterized interacting protein, Reptin. The ability to regulate AGR2 oligomerization in trans opens the possibility for developing small molecules that regulate its' biochemical activity as potential cancer therapeutics. The data also highlight the utility of this oligomerization assay to screen chemical libraries for ligands that could regulate AGR2 dimer stability and its' oncogenic potential.  相似文献   
2.
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.  相似文献   
3.
Epigenetic changes are important mechanisms in the regulation of chromatin structure and gene expression. Cytosine methylation is one of the major epigenetic modifications, mediated by DNA methyltransferases, which transfer methyl groups from S‐adenosyl‐L‐methionine (SAM) to the fifth carbon of cytosine. Various external environmental conditions can change the global hypo/hypermethylation pattern of DNA. These alterations may affect the organism's response to stress conditions. In this study, for the first time, we investigated the effects of 5‐azacytidine, a DNA methyltransferase inhibitor, and cadmium, a toxic metal and environmental pollutant, on the growth, biosynthesis of secondary metabolites (phenols, flavonoids, carotenoids), SAM, S‐adenosylhomocysteine, 5′‐methylthioadenosine and global 5‐methylcytosine (5‐mC) in the green microalgae Chlamydomonas reinhardtii and Scenedesmus quadricauda. The studied species showed major differences in 5‐mC content, secondary metabolite content, and antioxidant activity. Cadmium increased GSH (glutathione) content in C. reinhardtii by 60% whereas 5‐azacytidine did not affect GSH. The biosynthesis of GSH in S. quadricauda in response to the stressors was the opposite. Global 5‐mC content of C. reinhardtii was 1%–1.5%, and the content in S. quadricauda was 3.5%. Amount of some investigated methionine cycle metabolites (SAM, S‐adenosyl homocysteine [SAH], methionine) in S. quadricauda distinctly exceeded C. reinhardtii as well. However, chlorophylls a and b, carotenoids, total phenolic content, total flavonoid content and, antioxidant activity were significantly higher in C. reinhardtii than S. quadricauda. Therefore, in further studies it would be advisable to verify whether methylation of cytosine affects the expression of genes encoding certain secondary metabolites.  相似文献   
4.
5.
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell’s proliferation potential.  相似文献   
6.
p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)‐binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the “activating” C‐terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked‐immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild‐type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the “unfolded” conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.  相似文献   
7.
8.
Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.  相似文献   
9.
10.
Perfusion of Langendorff rat hearts with [14C]adenosine yields an acid-insoluble, radioactive product whose concentration falls during ischaemia. The properties of the substance show that it is a polyribonucleotide. It is suggested that it may be mitochondrial poly A acting as a storage form of adenine nucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号