首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aude  Erik  Lawesson  Jonas E. 《Plant Ecology》1998,134(1):53-65
The importance of management regime on floristic variation (mosses and vascular plants) in four Danish beech forests was investigated. Sixty-four blocks were sampled, representing beech stands of different age and management types. Nineteen potential explanatory variables were recorded and tested with Monte-Carlo tests and Canonical Correspondence Analysis. In addition results were evaluated by use of Detrended Correspondence Analysis. Explanatory variables were divided into three groups; soil, microclimatic and management parameters. The amount of variation explained by each group of variables was calculated by use of variation partitioning. The group consisting of management variables explained most variation, on local as well as regional scale. Management related variables explained more variation in vegetation than any other variables together. This indicates the importance of management as determining species composition in Danish beech forests. Management related variables explained most variation on local scale. On a regional scale, soil parameters explained the major part of the variation. The results suggest that thirty years without management are sufficient to change species composition significantly, as compared to managed forests.  相似文献   

2.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

3.
Epiphytic bryophytes growing on Lithocarpus xylocarpus (Kurz) Markgr. trunks of different diameter classes in primary (132 plots) and secondary (84 plots) Lithocarpus forests in the Ailao Mountains, SW China, were surveyed and analyzed to determine species composition and richness, and to identify environmental variables that may affect it. Among the 65 species (belonging to 32 genera, 19 families) found, 28 occurred in both forests, with Syrrhopodon gardneri (Hook.) Schwaegr. predominanting. Species richness and total coverage in primary forest were significantly higher than in secondary forest. We suggest that a period of perhaps much more than 110 years is necessary for the recovery of epiphytic bryoflora in montane forest of SW China. Fan, turf, and smooth mat are the most important life forms, with high occurrences in both forests. The life form composition of epiphytic bryophytes is determined mainly by microhabitat and host age. Tree age, the presence of primary forest, bark pH, and plot exposure are the environmental variables that have significantly influenced the composition of epiphytic bryophytes. Tree age explained most variations in epiphytic bryoflora. Bark pH is another important parameter that significantly influenced the epiphytic bryophyte community, but seemed indirectly correlated with tree age. Primary forest is a favorable habitat for epiphytes, due mainly to its diversified canopy structure and the presence of large diameter hosts. Moisture-laden southwest trade winds and forest structure could differentiate microclimate and impel a distinct composition of epiphytes in windward and leeward exposures.  相似文献   

4.
Question: What is the relative influence of forest continuity, environmental differences and geographical context on vegetation and species richness in ancient and recent forests? Location: Himmerland and Hornsherred in Denmark. Methods: Lists of forest species from deciduous forests were subjected to CCA with variation partitioning to quantify the relative amount of variation in species composition attributable to historical, present geographical and environmental variables. GLM was used to estimate the importance of the variables to species richness. Results: The importance of temporal forest continuity in one region was negligible but was considerable in the other. The variation in species composition explained by geographical, environmental and historical variables showed little overlap in both regions, particularly at the fine scale. Conclusions: This paper does not support the idea that differences in the flora between ancient and recent forests is mainly caused by environmental differences. Furthermore, species richness seemed unaffected by isolation and forest connectivity.  相似文献   

5.
Question: Can the pattern and pace of spontaneous Fagus forest expansion from 1975 to 2003 be accurately detected with mid‐resolution satellite imagery? Can the historical Fagus expansion be modelled on the basis of environmental predictors? If so, where are the highest probabilities for future Fagus expansion? What are the implications for park management? Location: Majella National Park, Italy, > 1000 m a.s.l.; municipalities of S. Eufemia and Pacentro. Methods: Fagus cover change was detected by overlaying three classified sequential satellite images. Historical Fagus expansion was related to environmental variables using ordinary logistic and autologistic regression models. Fagus expansion probabilities were generated with the best predictive model. Results: From 1975 to 2003 Fagus advanced into abandoned farmland and subalpine pastures from the contiguous, midaltitudinal Fagus forest and from Fagus outliers, at a rate of 1.2 % per year. Substantial spatial and temporal variations in expansion rates were detected. The ordinary and autologistic models based on the single predictor Distance‐from‐Fagus‐1975 forecasted the Fagus expansion well (AUC 0.81 resp. 0.88). Multiple logistic models, including the topo‐climatic and substrate predictors, improved prediction insignificantly. The strong predictive power of proximity to historical Fagus presence is explained by the dispersal biology of Fagus combined with the shading impact of the Fagus canopy at the forest fringe. Conclusion: Decade‐long Fagus expansion patterns might be reliably forecasted by proximity to historical Fagus distribution. Consequences for park management options are outlined.  相似文献   

6.
Deciduous forests with temperate broad‐leaved tree species are particularily important in terms of biodiversity and its protection, but are threatened habitats in northern Europe. Using multivariate analyses we studied the effect of forest site type, environmental variables and host tree properties on epiphytic lichen synusiae as well as on the composition of species‐specific functional traits. Epiphytic lichens were examined on Acer platanoides, Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra and U. laevis in two types of forests: Humulus‐type floodplain forests and Lunaria‐type boreo‐nemoral forests on the talus slopes of limestone escarpment (klint forests). Klint forests located near the seashore were under greater maritime influence compared to floodplain forests located in inland Estonia which experience stronger air temperature contrasts. In addition to stand level and climatic variables, tree level factors (bark pH, trunk circumference and cover of bryophytes) considerably affected the species composition of the lichen synusiae. Overall, 137 lichen species were recorded, including 14 red‐listed species characteristic of deciduous trees. We defined 13 lichen societies and showed their preference to forests of a specific site type and/or host tree properties. In forests of both types, most of the epiphytic lichens were crustose, and had apothecia as the fruit bodies and chlorococcoid algae as the photobiont. However, the proportion of lichens with a foliose or fruticose growth form, as well as the proportion of lichens with vegatative diaspores, were higher in floodplain forests. In klint forests with a stronger influence from the wind, crustose species completely dominated, while species with vegetative diaspores were rare and most species dispersed sexually. Lichens with Trentepohlia as the photobiont were characteristic of these forests, and lichens with lirellate ascomata were prevailing, indicating the great uniqueness of the kint forests for epiphytic lichens in the boreo‐nemoral region.  相似文献   

7.
Abstract. Distribution of tree seedlings, forest architecture, light conditions, ground vegetation and humus conditions were studied in a 45 m × 100 m area including multiple gaps in an old-growth beech forest. Gaps were created after some beech trees had been felled in severe storms in February 1990. A group of adult ash trees is found near the study site. The data were analyzed by Correspondence Analysis. Young seedlings (< 4 yr), of both Fraxinus (a sun species) and Fagus (a shade species), were most abundant under the crown of beech trees in semi-shade conditions, and where beech litter did not accumulate. Differences in the dissemination of Fraxinus and Fagus explained differences in the establishment of the two species. In contrast, older seedlings of beech established before the storms were more numerous in the gaps, suggesting a change in the ecological requirements of beech seedlings in the course of time.  相似文献   

8.
Abstract. Vascular epiphytes were studied in forests at altitudes from 720 to 2370 m on the Atlantic slope of central Veracruz, Mexico. The biomass of all trees of each species > 10 cm diameter at breast height within plots between 625 and 1500 m2 was estimated. The number of species per plot ranged between 22 and 53, and biomass between 9 and 249 g dry weight/m2. The highest values, both of species and biomass, were found at an intermediate altitude (1430 m). Habitat diversity may contribute to epiphyte diversity in humid forests, but the importance of this effect could not be distinguished from the influence of climate. A remarkably high number of bromeliads and orchids grew in relatively dry forests at low altitudes. In wet upper montane forests, bromeliads were replaced by ferns, while orchids were numerous at all sites, except for a pine forest. The number of epiphytic species and their biomass on a tree of a given site were closely related to tree size. According to Canonical Correspondence Analysis, the factor determining the composition of the epiphytic vegetation of a tree was altitude and to some extent tree size, whereas tree species had practically no influence. The only trees which had an evidently negative effect on epiphytes were pines, which were particularly hostile to orchids and to a lesser degree to ferns, and Bursera simaruba, which generally had few epiphytes due to its smooth and defoliating bark.  相似文献   

9.
附生地衣是森林附生植物的重要类群之一, 在维护森林生态系统的物种多样性以及水分和养分循环等方面发挥着重要作用。作者于2005年12月至2006年5月利用树干取样法调查了云南哀牢山徐家坝地区原生山地常绿阔叶林及其次生群落栎类萌生林、滇山杨(Populus bonatii)林和花椒(Zanthoxylum bungeanum)人工林中525株不同种类和径级树木距地面 0–2.0 m处附生地衣的组成和分布, 并收集了各个群落地面上凋落的地衣, 分析了林冠层附生地衣的物种组成。研究结果表明, 该区森林中附生地衣物种比较丰富。共收集到附生地衣61种, 分属17科29属, 其中原生林、栎类萌生林、滇山杨林和花椒人工林分别有51、53、46和23种。在树干距地面 0–2.0 m位置, 各群落中的附生地衣组成明显不同;但在林冠层中, 各群落内的附生地衣基本相似。原生林中附生地衣种类较多, 但分布不均匀。树干附生地衣的Shannon-Wiener和Simpson多样性指数以栎类萌生林最高, 分别为2.71和0.89;花椒林和滇山杨林次之, 分别为2.43–2.45和0.88–0.89;原生林最低, 为1.25和0.67。树干方位、宿主种类和宿主径级等都对附生地衣的物种组成和多样性有着重要影响, 附生地衣更多地出现于树干南向方位, 云南越桔(Vaccinium duclouxii)的附生地衣最为丰富, 胸径5.0–25.0 cm的树木上附生地衣较多。哀牢山山地森林群落中丰富的附生地衣种类及物种多样性在维系本区山地森林生态系统生物多样性格局方面具有重要的作用。  相似文献   

10.
Abstract. Question: What are the relative influences of human impact, macroclimate, geographic location and habitat related environmental differences on species composition of boreal epiphytic macrolichen communities? Location: Troms county in northern Norway. Methods: Detrended Correspondence Analysis revealed the main gradient structure in lists of epiphytic macrolichen species from deciduous forests. By Canonical Correspondence Analysis with variance partitioning, the relative amount of variance in macrolichen species composition attributable to human impact, macroclimate, spatial context and environmental differences was quantified. Results: There was no significant effect of human impact on species composition of epiphytic macrolichens of deciduous forests. Macroclimate was the most important factor determining epiphytic macrolichen communities, which were also strongly influenced by ecological differences such as forest stand properties. Conclusions: Epiphytic macrolichen communities are determined by a macroclimatic gradient from the coastline to the interior of central north Norway. In marked contrast, the species composition of epiphytic macrolichen communities seems to be unaffected by human impact in the study area, where air pollution was marginal.  相似文献   

11.
Aim To develop a landscape‐level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location North and central Florida, USA. Methods We measured plant species composition and cover in 271 plots throughout the study region. A variation‐partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three‐way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local‐ and regional‐scale environmental effects as well as possible historical constraints on floristic variation in pine‐dominated pyrogenic grasslands of the south‐eastern USA.  相似文献   

12.
Abstract. Epiphytic and epixylic lichens were surveyed on 15 1-ha plots in mature Picea abies-dominated boreal forests in southern Finland. The sample plots were classified into three groups according to the age of the dominant tree stand and recent signs of cutting: (1) early mature managed, ‘EM’ (95 -109 yr), (2) late mature managed, ‘LM’ (126 - 145 yr) and (3) old-growth, ‘OG’ (129 - 198 yr). Two data sets on epiphytic and epixylic lichens were recorded from each plot: (1) species on basal trunks and branches of Picea abies and (2) species on all available woody substrates, including basal parts of all tree species, saplings, snags, logs and stumps. 142 epiphytic and epixylic lichen species were found, of which 83 (58%) occurred on P. abies. Mean total numbers of species per sample plot were 69 in EM, 78 in LM and 88 in OG plots, species number on P. abies were 47, 56, and 54 respectively. The LM plots had lower species numbers than OG plots, mainly due to the lack of old Populus tremula trees, but they had higher species number than the EM plots mainly due to the higher age of Picea abies. Differences in species composition, both within and between the three groups, were small. The results suggest that the epiphytic and epixylic lichen diversity in a managed stand can be increased by prolonging the rotation of the stand to >120 yr and by increasing the diversity of habitats in the stand.  相似文献   

13.
Jan Douda 《植被学杂志》2010,21(6):1110-1124
Questions: What is the relative importance of landscape variables compared to habitat quality variables in determining species composition in floodplain forests across different physiographic areas? How do species composition and species traits relate to effects of particular landscape variables? Do lowland and mountain areas differ in effects of landscape variables on species composition? Location: Southern Czech Republic. Methods: A total of 240 vegetation relevés of floodplain forests with measured site conditions were recorded across six physiographic areas. I tested how physiographic area, habitat quality variables and landscape variables such as current land‐cover categories, forest continuity, forest size and urbanization influenced plant species composition. I also compared how mountain and lowland areas differ in terms of the relative importance of these variables. To determine how landscape configuration affects the distribution of species traits, relationships of traits and species affinity with landscape variables were tested. Results: Among landscape variables, forest continuity, landscape forest cover and distance to nearest settlement altered the vegetation. These variables also influenced the distributions of species traits, i.e. life forms, life strategies, affinity to forest, dispersal modes, seed characteristics, flooding tolerance and Ellenberg indicator values for nitrogen, light, moisture and soil reaction. Nevertheless, physiographic area and habitat quality variables explained more variation in species composition. Landscape variables were more important in lowland areas. Forest continuity affected species composition only in lowlands. Conclusions: Although habitat quality and physiographic area explained more vegetation variability, landscape configuration was also a key factor influencing species composition and distribution of species traits. However, the results are dependent on forest geographical location, with lowland forests being more influenced by landscape variables compared to mountain forests.  相似文献   

14.
Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity.  相似文献   

15.
Tree and stand level variables affecting the species richness, cover and composition of epiphytic lichens on temperate broad-leaved trees (Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra, and U. laevis) were analysed in floodplain forest stands in Estonia. The effect of tree species, substrate characteristics, and stand and regional variables were tested by partial canonical correspondence analysis (pCCA) and by general linear mixed models (GLMM). The most pronounced factors affecting the species richness, cover and composition of epiphytic lichens are acidity of tree bark, bryophyte cover and circumference of tree stems. Stand level characteristics have less effects on the species richness of epiphytic lichens, however, lichen cover and composition was influenced by stand age and light availability. The boreo-nemoral floodplain forests represent valuable habitats for epiphytic lichens. As substrate-related factors influence the species diversity of lichens on temperate broad-leaved trees differently, it is important to consider the effect of each tree species in biodiversity and conservation studies of lichens. Nomenclature Randlane et al. (2007) for lichens; Leht (2007) for vascular plants.  相似文献   

16.
Question: Can lichen communities be used to assess short‐ and long‐term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty‐seven randomly selected mid‐elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long‐term (stand succession) and short‐term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions.  相似文献   

17.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

18.
Questions: 1. How do physiography, flooding regime, landscape pattern, land‐cover history, and local soil conditions influence the presence, community structure and abundance of overstorey trees? 2. Can broad‐scale factors explain variation in the floodplain forest community, or are locally measured soil conditions necessary? Location: Floodplain of the lower 370 km of the Wisconsin River, Wisconsin, USA. Methods: Floodplain forest was sampled in 10 m × 20 m plots [n= 405) during summers of 1999 and 2000 in six 12‐ to 15‐km reaches. Results: Species observed most frequently were Fraxinus pennsylvanica, Acer saccharinum and Ulmus americana. Physiography (e.g. geographic province) and indicators of flooding regime (e.g. relative elevation and distance from main channel) were consistently important in predicting occurrence, community composition, and abundance of trees. Correspondence analysis revealed that flood‐tolerant and intolerant species segregated along the primary axis, and late‐successional species segregated from flood‐tolerant species along the secondary axis. Current landscape configuration only influenced species presence or abundance in forests that developed during recent decades. Land‐cover history was important for tree species presence and for the abundance of late‐successional species. Comparison of statistical models developed with and without soils data suggested that broad‐scale factors such as geographic province generally performed well. Conclusions: Physiography and indicators of flood regime are particularly useful for explaining floodplain forest structure and composition in floodplains with a relatively high proportion of natural cover types.  相似文献   

19.
Abstract. Up to now the syntaxonomy of the Fagus woods of the southern Balkans is far less known than that of beech communities in the northwestern part of the Balkan Peninsula and in central and western Europe. A set of 607 phytosociological relevés from southeastern Serbia, the Former Yugoslav Republic of Macedonia, and northern and central Greece was subjected to numerical classification and ordination. These results were used for a syntaxonomic revision of Fagus, Fagus‐Abies and Fagus‐Acer woodland communities of the southwestern Balkans. The Doronico columnae‐Fagenion (seven associations from Serbia, the F.Y.R.O.M., and high altitudes in northern Greece) and the Doronico orientalis‐Fagenion (four associations from northern and central Greece) were distinguished. The results of ordination by Canonical Variates Analysis (CVA) showed a very distinct phytogeographical pattern of differentiation between community types. The floristic composition of Fagus woods changes markedly along the north‐south gradient. The share of Subbalkan, Balkan, Submediterranean and Mediterranean species increases significantly towards the south, while the Central‐European, European, Euro‐Siberian, Euro‐Asiatic and Circumpolar species decrease in the same direction. The syntaxonomic differentiation of the Fagus woodlands and their classification into regional suballiances reflects this gradient. With the rise in altitude, the number of Balkan, Mediterranean, Submediterranean, European and Euro‐Asiatic species declines.  相似文献   

20.
Gaxiola A  Burrows LE  Coomes DA 《Oecologia》2008,155(2):325-335
Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号