首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hegde V  Klein H 《Nucleic acids research》2000,28(14):2779-2783
Mitotic cells experience double-strand breaks (DSBs) from both exogenous and endogenous sources. Since unrepaired DSBs can result in genome rearrangements or cell death, cells mobilize multiple pathways to repair the DNA damage. In the yeast Saccharomyces cerevisiae, mitotic cells preferentially use a homologous recombination repair pathway. However, when no significant homology to the DSB ends is available, cells utilize a repair process called non-homologous end joining (NHEJ), which can join ends with no homology through resection to uncover microhomologies of a few nucleotides. Although components of the homologous recombination repair system are also involved in NHEJ, the rejoining does not involve all of the homologous recombination repair genes. The SRS2 DNA helicase has been shown to be required for DSB repair when the homologous single-stranded regions are short. Here it is shown that SRS2 is also required for NHEJ, regardless of the cell mating type. Efficient NHEJ of sticky ends requires the Ku70 and Ku80 proteins and the silencing genes SIR2, SIR3 and SIR4. However, NHEJ of blunt ends, while very inefficient, is not further reduced by mutations in YKU70, SIR2, SIR3, SIR4 or SRS2, suggesting that this rejoining process occurs by a different mechanism.  相似文献   

2.
DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein–protein interactions or by larger scale chromatin structure.  相似文献   

3.
Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku''s affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.  相似文献   

4.
DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ.  相似文献   

5.
V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC’s ability to restrict repair pathway choice.  相似文献   

6.
DNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD). NHEJ of blunt-end and complementary 5'-overhang DSBs is highly mutagenic ( approximately 50% error rate). Analysis of the recombination junctions ensuing from individual NHEJ events highlighted the participation of several DNA end-remodeling activities, including template-dependent fill-in of 5' overhangs, nontemplated addition of single nucleotides at blunt ends, and nucleolytic resection. LigD itself has the template-dependent and template-independent polymerase functions in vitro that compose the molecular signatures of NHEJ in vivo. Another ATP-dependent DNA ligase (LigC) provides a backup mechanism for LigD-independent error-prone repair of blunt-end DSBs. We speculate that NHEJ allows mycobacteria to evade genotoxic host defense.  相似文献   

7.
Transposase domain proteins mediate DNA movement from one location in the genome to another in lower organisms. However, in human cells such DNA mobility would be deleterious, and therefore the vast majority of transposase-related sequences in humans are pseudogenes. We recently isolated and characterized a SET and transposase domain protein termed Metnase that promotes DNA double-strand break (DSB) repair by non-homologous end-joining (NHEJ). Both the SET and transposase domain were required for its NHEJ activity. In this study we found that Metnase interacts with DNA Ligase IV, an important component of the classical NHEJ pathway. We investigated whether Metnase had structural requirements of the free DNA ends for NHEJ repair, and found that Metnase assists in joining all types of free DNA ends equally well. Metnase also prevents long deletions from processing of the free DNA ends, and improves the accuracy of NHEJ. Metnase levels correlate with the speed of disappearance of γ-H2Ax sites after ionizing radiation. However, Metnase has little effect on homologous recombination repair of a single DSB. Altogether, these results fit a model where Metnase plays a role in the fate of free DNA ends during NHEJ repair of DSBs.  相似文献   

8.
The endless tale of non-homologous end-joining   总被引:1,自引:0,他引:1  
Weterings E  Chen DJ 《Cell research》2008,18(1):114-124
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.  相似文献   

9.
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.  相似文献   

10.
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.  相似文献   

11.
Mao Z  Bozzella M  Seluanov A  Gorbunova V 《DNA Repair》2008,7(10):1765-1771
The two major pathways for repair of DNA double-strand breaks (DSBs) are homologous recombination (HR) and nonhomologous end joining (NHEJ). HR leads to accurate repair, while NHEJ is intrinsically mutagenic. To understand human somatic mutation it is essential to know the relationship between these pathways in human cells. Here we provide a comparison of the kinetics and relative contributions of HR and NHEJ in normal human cells. We used chromosomally integrated fluorescent reporter substrates for real-time in vivo monitoring of the NHEJ and HR. By examining multiple integrated clones we show that the efficiency of NHEJ and HR is strongly influenced by chromosomal location. Furthermore, we show that NHEJ of compatible ends (NHEJ-C) and NHEJ of incompatible ends (NHEJ-I) are fast processes, which can be completed in approximately 30 min, while HR is much slower and takes 7h or longer to complete. In actively cycling cells NHEJ-C is twice as efficient as NHEJ-I, and NHEJ-I is three times more efficient than HR. Our results suggest that NHEJ is a faster and more efficient DSB repair pathway than HR.  相似文献   

12.
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.  相似文献   

13.
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV–dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.DNA double-strand breaks (DSBs) are highly toxic lesions. However, in certain essential physiological processes, DSBs are used to promote genetic diversity. Programmed DSBs generated by cellular enzymes are repaired by the same mechanisms as those used for stress-induced DSBs. Thus, DSB repair stands at the crossroads between genetic variability and instability.DSB repair uses two primary strategies: non-homologous end-joining (NHEJ), which is generally considered to be error-prone, and homologous recombination (HR), which is considered to be error-free. However, this view is too simplistic. Herein, we discuss several pieces of data that challenge the fallibility of NHEJ.  相似文献   

14.
Shao Z  Davis AJ  Fattah KR  So S  Sun J  Lee KJ  Harrison L  Yang J  Chen DJ 《DNA Repair》2012,11(3):310-316
DNA double strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). The DNA cell cycle stage and resection of the DSB ends are two key mechanisms which are believed to push DSB repair to the HR pathway. Here, we show that the NHEJ factor Ku80 associates with DSBs in S phase, when HR is thought to be the preferred repair pathway, and its dynamics/kinetics at DSBs is similar to those observed for Ku80 in non-S phase in mammalian cells. A Ku homolog from Mycobacterium tuberculosis binds to and is retained at DSBs in S phase and was used as a tool to determine if blocking DNA ends affects end resection and HR in mammalian cells. A decrease in DNA end resection, as marked by IR-induced RPA, BrdU, and Rad51 focus formation, and HR are observed when Ku deficient rodent cells are complemented with Mt-Ku. Together, this data suggests that Ku70/80 binds to DSBs in all cell cycle stages and is likely actively displaced from DSB ends to free the DNA ends for DNA end resection and thus HR to occur.  相似文献   

15.
DNA双链断裂(DSBs)是严重的DNA损伤形式之一,生物体对DSBs的修复可通过同源重组(HR)或非同源末端连接途径(NHEJ)进行。长期以来,人们普遍认为HR是细菌DSBs修复的惟一途径,但在分支杆菌和其它原核生物体内NHEJ途径的发现,使这一观念得以颠覆。最近的研究表明,细菌NHEJ修复系统是一个双组分系统,包含一个多功能的DNA连接酶(LigD)和DNA末端结合蛋白Ku,具有DSBs修复所需的断裂末段识别、末端加工和连接活性。重点综述细菌NHEJ修复系统的组成、结构以及生理功能。  相似文献   

16.
DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5′–3′ end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.  相似文献   

17.
The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.  相似文献   

18.
Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells. Here we report that chromosomal DSBs with compatible ends introduced by the rare-cutting endonuclease, ISceI, are repaired by precise ligation nearly 100% of the time in human cells. Precise ligation depends on the classical NHEJ components Ku70, XRCC4, and DNA ligase IV, since siRNA knockdowns of these factors significantly reduced the efficiency of precise ligation. Interestingly, knockdown of the tumor suppressors p53 or BRCA1 showed similar effects as the knockdowns of NHEJ factors. In contrast, knockdown of components involved in alternative NHEJ, mismatch repair, nucleotide excision repair, and single-strand break repair did not reduce precise ligation. In summary, our results demonstrate that DSBs in human cells are efficiently repaired by precise ligation, which requires classical NHEJ components and is enhanced by p53 and BRCA1.  相似文献   

19.
Joyce EF  Paul A  Chen KE  Tanneti N  McKim KS 《Genetics》2012,191(3):739-746
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis.  相似文献   

20.
Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号