首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.  相似文献   

2.
DNA vaccination offers a strategy to induce immune attack on cancer cells, but tumor Ags are often weak. Inclusion of a "foreign" protein increases immunogenicity, and we found previously that fusion of the fragment C (FrC) of tetanus toxin to the tumor Ag sequence promotes Ab and CD4(+) responses against B cell tumors. For CTL responses, use of the full two-domain FrC may be less helpful, because known immunogenic MHC class I-binding peptides in the second domain could compete with attached tumor-derived epitopes. Therefore, we removed the second domain, retaining the N-terminal domain, which contains a "universal" helper epitope. We investigated the ability to induce CTL responses of candidate peptides placed at the C terminus of this domain. As test peptides, we repositioned the two known CTL motifs from the second domain to this site. Strong CTL responses to each peptide were induced by the engineered construct, as compared with the native FrC construct. Induced CTLs were able to specifically kill tumor cells transfected with FrC as a surrogate tumor Ag both in vitro and in vivo. Further reduction of the domain to a short helper epitope generated only weak CTL responses against fused peptides, and synthetic peptides mixed with the plasmid containing the first domain were ineffective. The single FrC domain-peptide vaccine design also was able to induce high levels of CTLs against a known epitope from carcinoembryonic Ag. Response to peptide was suppressed if two FrC domains were present, consistent with immunodominance. These principles and designs may have relevance for cancer vaccines delivered via DNA.  相似文献   

3.
We have designed DNA fusion vaccines able to induce high levels of epitope-specific CD8(+) T cells, using linked CD4(+) T cell help. Such vaccines can activate effective immunity against tumor Ags. To model performance against minor histocompatibility (H) Ags important in allogeneic hemopoietic stem cell transplantation, responses against the H2D(b)-restricted Uty and Smcy male HY epitopes have been investigated. Vaccination of females induced high levels of tetramer-specific, IFN-gamma-producing CD8(+) T cells against each epitope. Vaccines incorporating a single epitope primed effector CTL able to kill male splenocytes in vitro and in vivo, and HY(Db)Uty-specific vaccination accelerated rejection of syngeneic male skin grafts. Priming against either epitope established long-term memory, expandable by injection of male cells. Expanded CD8(+) T cells remained specific for the priming HY epitope, with responses to the second suppressed. To investigate vaccine performance in a tolerized repertoire, male mice were vaccinated with the fusion constructs. Strikingly, this also generated epitope-specific IFN-gamma-producing CD8(+) T cells with cytotoxic function. However, numbers and avidity were lower than in vaccinated females, and vaccinated males failed to reject CFSE-labeled male splenocytes in vivo. Nevertheless, these findings indicate that DNA fusion vaccines can mobilize CD8(+) T cells against endogenous minor H Ags, even from a profoundly tolerized repertoire. In the transplantation setting, vaccination of donors could prime and expand specific T cells for in vivo transfer. For patients, vaccination could activate a potentially less tolerized repertoire against similar Ags that may be overexpressed by tumor cells, for focused immune attack.  相似文献   

4.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

5.
CyaA, the adenylate cyclase toxin from Bordetella pertussis, can deliver its N-terminal catalytic domain into the cytosol of a large number of eukaryotic cells and particularly into professional antigen-presenting cells. We have previously identified within the primary structure of CyaA several permissive sites at which insertion of peptides does not alter the ability of the toxin to enter cells. This property has been exploited to design recombinant CyaA toxoids capable of delivering major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell epitopes into antigen-presenting cells and to induce specific CD8(+) cytotoxic T-lymphocyte (CTL) responses in vivo. Here we have explored the capacity of the CyaA vector carrying several different CD8(+) T-cell epitopes to prime multiple CTL responses. The model vaccine consisted of a polyepitope made of three CTL epitopes from lymphocytic choriomeningitis virus (LCMV), the V3 region of human immunodeficiency virus gp120, and chicken ovalbumin, inserted at three different sites of the catalytic domain of genetically detoxified CyaA. Each of these epitopes was processed on delivery by CyaA and presented in vitro to specific T-cell hybridomas. Immunization of mice by CyaA toxoids carrying the polyepitope lead to the induction of specific CTL responses for each of the three epitopes, as well as to protection against a lethal viral challenge. Moreover, mice primed against the vector by mock CyaA or a recombinant toxoid were still able to develop strong CTL responses after subsequent immunization with a recombinant CyaA carrying a foreign CD8(+) CTL epitope. These results highlight the potency of the adenylate cyclase vector for induction of protective CTL responses with multiple specificity and/or broad MHC restriction.  相似文献   

6.
There is accumulating evidence that CD4(+) T cell responses are important in antitumor immunity. Accordingly, we generated CD4(+) T cells against the murine CT26 colon cancer. Three of three independent CT26-specific CD4(+) hybridomas were found to recognize the high m.w. precursor of the env gene product gp90. The CD4(+) response was completely tumor specific in that the same glycoprotein expressed by other tumors was not recognized by the CT26-specific hybridomas. The recognition of gp90 by the hybridomas was strictly dependent on the conformation of gp90. Different procedures that disrupted the conformation of the glycoprotein, such as disulfide bond reduction and thermal denaturation, completely abrogated recognition of gp90 by all three hybridomas. In CT26 cells, but not in other tumor cells tested, a large proportion of gp90 was retained in the endoplasmic reticulum, mostly bound to the endoplasmic reticulum chaperone, calreticulin. Although calreticulin was not essential for the stimulation of the gp90-specific hybridomas, most of the antigenic form of gp90 was bound to it. The antigenicity of gp90 correlated well with calreticulin binding, reflecting the fact that specificity of binding of calreticulin to its substrate required posttranslational modifications that were also necessary for the generation of this tumor-specific CD4(+) epitope.  相似文献   

7.
Previously, we compared the efficiency of direct injection with an adenovirus (Ad) expressing human gp100 (hgp100) to immunization with dendritic cells (DC) loaded with the same vector ex vivo. The DC vaccine provided the greatest protection against challenge with B16F10 melanoma, and antitumor immunity was found to be CD8(+) T cell-independent. In the current study, we sought to determine whether lack of CD8(+) T cell-mediated antitumor immunity was a function of the vaccine platform or the tumor line. Both Ad and DC/Ad vaccines elicited CD8(+) CTL reactive against hgp100 and provided protection against B16F10 engineered to express hgp100 demonstrating that both vaccination platforms can effectively generate protective CD8(+) T cell-mediated immunity. The hgp100-induced CTL cross-reacted with murine gp100 (mgp100) and lysed B16F10 cells pulsed with mgp100 peptide indicating that the resistance of B16F10 cells to CTL elicited by hgp100 vaccination may be due to a defect in processing of the endogenous mgp100. Indeed, introduction of the TAP-1 cDNA into B16F10 rendered the cells sensitive to lysis by gp100-specific CTL. Furthermore, gp100-immunized mice were protected from challenge with B16F10-TAP1 cells through a mechanism dependent upon CD8(+) T cells. These results demonstrate that tumor phenotype, not the vaccination platform, ultimately determines CD8(+) or CD4(+) T cell-mediated tumor clearance.  相似文献   

8.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

9.
Song MK  Lee SW  Suh YS  Lee KJ  Sung YC 《Journal of virology》2000,74(6):2920-2925
The induction of strong cytotoxic T-lymphocyte (CTL) and humoral responses appear to be essential for the elimination of persistently infecting viruses, such as hepatitis C virus (HCV). Here, we tested several vaccine regimens and demonstrate that a combined vaccine regimen, consisting of HCV E2 DNA priming and boosting with recombinant E2 protein, induces the strongest immune responses to HCV E2 protein. This combined vaccine regimen augments E2-specific immunoglobulin G2a (IgG2a) and CD8(+) CTL responses to a greater extent than immunizations with recombinant E2 protein and E2 DNA alone, respectively. In addition, the data showed that a protein boost following one DNA priming was also effective, but much less so than those following two DNA primings. These data indicate that sufficient DNA priming is essential for the enhancement of DNA encoded antigen-specific immunity by a booster immunization with recombinant E2 protein. Furthermore, the enhanced CD8(+) CTL and IgG2a responses induced by our combined vaccine regimens are closely associated with the protection of BALB/c mice from challenge with modified CT26 tumor cells expressing HCV E2 protein. Together, our results provide important implications for vaccine development for many pathogens, including HCV, which require strong antibody and CTL responses.  相似文献   

10.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

11.
Immunotherapeutic approaches, based on the generation of tumor-specific cytotoxic T-lymphocytes (CTL), are currently emerging as promising strategies of anti-tumor therapy. The potential use of attenuated bacteria as engineered vectors for vaccine development offers several advantages, including the stimulation of innate immunity. We developed an attenuated live bacterial vector using the type III secretion system (TTSS) of Pseudomonas aeruginosa to deliver in vivo tumor antigens. Using an inducible and rapid expression plasmid, vaccination with several antigens of different length and epitope composition, including TRp-2, gp100 and MUC18, was evaluated against glioma tumor cells. We observed similar CTL immunity and T-cell receptor (TCR) repertoire diversity with the vaccines, TRP2(125-243), TRP2L(125-376) and TRP2S(291-376). However, only immunization with TRP2L(125-376) induced significant anti-tumor immunity. Taken together, our data indicate the importance of the epitopes composition and/or peptide length of these peptides for inducing cytotoxic T-lymphocyte (CTL) mediated immunity. Characteristics that consistently improved anti-tumor immunity include: long peptides with immunodominant and cryptic CD8(+) epitopes, and strong CD4(+) Th epitopes. Our bacterial vector is versatile, easy-to-use and quick to produce. This vector is suitable for rapid screening and evaluation of antigens of varying length and epitope composition.  相似文献   

12.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

13.
Tumor heterogeneity is a limiting factor in Ag-specific vaccination. Ag-negative variants may arise after tumor cells bearing the immunizing Ags are destroyed. In situ priming to tumor-associated epitopes distinct from and not cross-reactive with the immunizing Ags may be crucial to the ultimate success of cancer vaccination. Immunization of BALB/c mice with DNA encoding wild-type human ErbB-2 (Her-2/neu, E2) or cytoplasmic ErbB-2 (cytE2), activated primarily CD4 or CD8 T cells, respectively, and both vaccines protected against ErbB-2-positive D2F2/E2 tumors. In > or =50% of protected mice, a second challenge of ErbB-2-negative D2F2 tumor cells was rejected. Recognition of non-ErbB-2, tumor-associated Ags was demonstrated by immune cell proliferation upon stimulation with irradiated D2F2 cells. This broadening of epitope recognition was abolished if CD4 T cells were depleted before D2F2/E2 tumor challenge, demonstrating their critical role in Ag priming. Similarly, mice that rejected D2F2/cytE2 tumor cells, which express only MHC I epitopes of ErbB-2, were not protected from a second challenge with D2F2 cells. Depletion of CD8 T cells abolished protection against D2F2, indicating the activation of D2F2-specific CTL. Therefore, long term protection may be achieved by immunization with dominant Ag(s), followed by a general enhancement of CD4 T cell activity to promote priming to multiple tumor-associated Ags.  相似文献   

14.
Therapeutic vaccination trials, in which patients with cancer were vaccinated with minimal CTL peptide in oil-in-water formulations, have met with limited success. Many of these studies were based on the promising data of mice studies, showing that vaccination with a short synthetic peptide in IFA results in protective CD8(+) T cell immunity. By use of the highly immunogenic OVA CTL peptide in IFA as a model peptide-based vaccine, we investigated why minimal CTL peptide vaccines in IFA performed so inadequately to allow full optimization of peptide vaccination. Injection of the minimal MHC class I-binding OVA(257-264) peptide in IFA transiently activated CD8(+) effector T cells, which eventually failed to undergo secondary expansion or to kill target cells, as a result of a sustained and systemic presentation of the CTL peptides gradually leaking out of the IFA depot without systemic danger signals. Complementation of this vaccine with the MHC class II-binding Th peptide (OVA(323-339)) restored both secondary expansion and in vivo effector functions of CD8(+) T cells. Simply extending the CTL peptide to a length of 30 aa also preserved these CD8(+) T cell functions, independent of T cell help, because the longer CTL peptide was predominantly presented in the locally inflamed draining lymph node. Importantly, these functional differences were reproduced in two additional model Ag systems. Our data clearly show why priming of CTL with minimal peptide epitopes in IFA is suboptimal, and demonstrate that the use of longer versions of these CTL peptide epitopes ensures the induction of sustained effector CD8(+) T cell reactivity in vivo.  相似文献   

15.
In the CT26 BALB/c murine model of colorectal carcinoma, depletion of regulatory T cells (Tregs) prior to tumor inoculation results in protective immunity to both CT26 and other BALB/c-derived tumors of diverse histological origin. In this paper, we show that cross-protection can be conferred by adoptively transferred CD8(+) CTLs. Other schedules for inducing immunity to CT26 have been described, but they do not lead to cross-protection. We show that Treg ablation facilitates the development of new CTL specificities that are normally cryptic, and have mapped the root epitope of one of these responses. This work has allowed us to demonstrate how the specificity of CTL responses to tumor Ags can be controlled via differential suppression of CTL specificities by Tregs, and how this can result in very different physiological outcomes.  相似文献   

16.
Avipoxvirus-based vectors, such as recombinant canarypox virus ALVAC, are studied extensively as delivery vehicles for vaccines against cancer and infectious diseases. Effective use of such vaccines is expected to benefit from proper understanding of the interaction between these viral vectors and the host immune system. We performed preclinical vaccination experiments in a murine tumor model to analyze the immunogenic properties of an ALVAC-based vaccine against carcinoembryonic Ag (ALVAC-CEA), a tumor-associated autoantigen commonly overexpressed in colorectal cancers. The protective CEA-specific immunity induced by this vaccine consisted of CD4(+) T cell responses with a mixed Th1/Th2 cytokine profile that were accompanied by potent humoral responses, but not by CEA-specific CD8(+) CTL immunity. In contrast, protective immunity induced by a CEA-specific DNA vaccine (DNA-CEA) consisted of Th1 and CTL responses. Modification of the ALVAC-CEA vaccine through coinjection of DNA-CEA, admixture with CpG oligodeoxynucleotides, or supplementation with additional transgenes encoding a triad of costimulatory molecules (TRICOM) did not result in induction of CEA-specific CTL responses. Even though these results suggested that ALVAC does not elicit Ag-specific CTLs, immunization with ALVAC vaccines against other Ags efficiently induced CTL responses. Our data show that the capacity of ALVAC vaccines to elicit CTL immunity against transgene-encoded Ags critically depends on the presence of highly immunogenic CTL epitopes in these Ags. This consideration needs to be taken into account with respect to the design and evaluation of vaccination strategies that use ALVAC-based vaccine.  相似文献   

17.
Controlling the cross-presentation of exogenous Ags to CD8+ T cells represents a major step for designing new vaccination strategies. Whereas several recombinant pseudo-viral particles have been used as delivery systems for triggering potent CTL responses to heterologous exogenous Ags, the adjuvant properties of virus-like particles (VLPs) themselves were little questioned. Here, we analyzed the contribution of the porcine parvovirus (PPV)-VLPs to the induction of protective cellular responses to exogenous Ags carried by an independent delivery system. Microspheres, which are known to transfer exogenous Ags into the MHC class I pathway, were chosen for delivering the immunodominant OVA(257-264) CD8+ T cell epitope (B-OVAp). This delivery system fulfills the requirements in terms of cross-presentation, but fails to induce cross-priming of specific CD8+ T cells. Coinjection of PPV-VLPs with B-OVAp results in the priming of potent CTL responses and type 1-biased immunity in a CD4- and CD40-independent manner, as efficiently as the recombinant PPV-VLPs carrying the same epitope (PPV-OVAp). Furthermore, vaccination with PPV-VLPs and B-OVAp was fully efficient to protect mice against the development of OVA-bearing melanoma. These findings indicate that PPV-VLPs act not only as a delivery system but also as a strong adjuvant when independently provided with exogenous Ag. Thus, dissociation between delivery system and adjuvant would provide a more flexible and reliable system to induce potent and protective CTL.  相似文献   

18.
Dendritic cells (DCs) are professional Ag-presenting cells that are being considered as potential immunotherapeutic agents to promote host immune responses against tumor Ags. In this study, recombinant adenovirus (Ad) vectors encoding melanoma-associated Ags were used to transduce murine DCs, which were then tested for their ability to activate CTL and induce protective immunity against B16 melanoma tumor cells. Immunization of C57BL/6 mice with DCs transduced with Ad vector encoding the hugp100 melanoma Ag (Ad2/hugp100) elicited the development of gp100-specific CTLs capable of lysing syngeneic fibroblasts transduced with Ad2/hugp100, as well as B16 cells expressing endogenous murine gp100. The induction of gp100-specific CTLs was associated with long term protection against lethal s.c. challenge with B16 cells. It was also possible to induce effective immunity against a murine melanoma self Ag, tyrosinase-related protein-2, using DCs transduced with Ad vector encoding the Ag. The level of antitumor protection achieved was dependent on the dose of DCs and required CD4+ T cell activity. Importantly, immunization with Ad vector-transduced DCs was not impaired in mice that had been preimmunized against Ad to mimic the immune status of the general human population. Finally, DC-based immunization also afforded partial protection against established B16 tumor cells, and the inhibition of tumor growth was improved by simultaneous immunization against two melanoma-associated Ags as opposed to either one alone. Taken together, these results support the concept of cancer immunotherapy using DCs transduced with Ad vectors encoding tumor-associated Ags.  相似文献   

19.
CD4+ T cells play a central role in the induction and persistence of CD8+ T cells in several models of autoimmune and infectious disease. To improve the efficacy of a synthetic peptide vaccine based on the self-Ag, gp100, we sought to provide Ag-specific T cell help. To identify a gp100 epitope restricted by the MHC class II allele with the highest prevalence in patients with malignant melanoma (HLA-DRB1*0401), we immunized mice transgenic for a chimeric human-mouse class II molecule (DR4-IE) with recombinant human gp100 protein. We then searched for the induction of CD4+ T cell reactivity using candidate epitopes predicted to bind to DRB1*0401 by a computer-assisted algorithm. Of the 21 peptides forecasted to bind most avidly, murine CD4+ T cells recognized the epitope (human gp10044-59, WNRQLYPEWTEAQRLD) that was predicted to bind best. Interestingly, the mouse helper T cells also recognized human melanoma cells expressing DRB1*0401. To evaluate whether human CD4+ T cells could be generated from the peripheral blood of patients with melanoma, we used the synthetic peptide h-gp10044-59 to sensitize lymphocytes ex vivo. Resultant human CD4+ T cells specifically recognized melanoma, as measured by tumor cytolysis and the specific release of cytokines and chemokines. HLA class II transgenic mice may be useful in the identification of helper epitopes derived from Ags of potentially great clinical utility.  相似文献   

20.
We have investigated the primary and secondary immunity generated in vivo by a MHC class I-deficient tumor cell line that expressed CD80 (B7-1). CD80 expression enhanced primary NK cell-mediated tumor rejection in vivo and T cell immunity against secondary tumor challenge. CD80 expression enhanced primary NK cell-mediated tumor rejection, and both NK cell perforin and IFN-gamma activity were critical for the rejection of MHC class I-deficient RMA-S-CD80 tumor cells. This primary rejection process stimulated the subsequent development of specific CTL and Th1 responses against Ags expressed by the MHC class I-deficient RMA-S tumor cells. The development of effective secondary T cell immunity could be elicited by irradiated RMA-S-CD80 tumor cells and was dependent upon NK cells and IFN-gamma in the priming response. Our findings demonstrate a key role for IFN-gamma in innate and adaptive immunity triggered by CD80 expression on tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号