首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collagenous fibers of von Korff pass from the dentin matrix between the odontoblasts into the dental pulp. Although collagen fibrils are known to be present between odontoblasts, the existence of von Korff fibers has remained controversial. This may be because their continuity between the dentin matrix and the pulp has not been demonstrated ultrastructurally. In this study we have examined the odontoblast layer in the middle to apical regions of perfusion-fixed permanent canine teeth of cats by using transmission electron microscopy. Ultrathin sections of demineralized specimens revealed frequent bundles of collagen fibrils 1) entering the odontoblast layer from the predentin, 2) present between odontoblast cell bodies, and 3) passing from between the odontoblasts into the pulp. The question of continuity of these bundles from the predentin, across the odontoblast layer into the pulp was examined in ultrathin serial sections. Unbroken continuity of a collagen bundle from the predentin between the odontoblasts into the pulp was established in a reconstruction of one series of 22 serial sections and was very strongly suggested by a number of other series in which the numbers of available sections restricted their full visibility. This investigation has shown, therefore, that classical von Korff fibers are present and that these fibers are present in fully erupted teeth with closed apices, i.e., at a time when secondary circumpulpal dentinogenesis is in progress. The findings call for a reexamination of the question of von Korff fibers during mantle dentinogenesis and primary circumpulpal dentinogenesis. Resolution of their existence at the earlier stages of dentinogenesis should be possible by using the ultrathin serial-sectioning technique.  相似文献   

2.
3.
The distribution and ultrastructure of class II major histocompatibility complex (MHC)-positive cells were investigated in human dental pulp, employing immunohistochemistry using an anti-human leukocyte antigen (HLA)-DR-monoclonal antibody. HLA-DR-immunopositive cells, appearing spindle-like or dendritic in profile, were densely distributed throughout the dental pulp. Under the electron microscope, these cells exhibited various sizes of vesicles containing clear or opaque contents, multivesicular bodies and characteristic fine tubulovesicular structures in their cytoplasm. Some reactive cells possessed coated pits and vesicles including electron-dense materials, indicating an active endocytosis. At the periphery of the pulp tissue, the HLA-DR-immunopositive cells were predominantly situated in the subodontoblastic layer, with some located in the odontoblast layer and/or predentin and extending their cytoplasmic processes into the dentinal tubules. Cell processes of these cells occasionally made contact with several odontoblast processes in the same way as the nerve fibers in the predentin. These cells never contained the typical phagosomes frequently observed in the HLA-DR-immunoreactive macrophages in the subodontoblastic layer and the pulp core. The results suggest that the HLA-DR-immunopositive cells in the odontoblast layer and/or predentin have some regulatory function on the odontoblasts under physiological conditions, in addition to their involvement in the initial defense reaction after tooth injury.  相似文献   

4.
Odontoblasts are highly specialized cells aligned at the edge of the dental pulp. As a step towards understanding the complex mechanisms underlying their terminal differentiation, the gene expression pattern was examined in human cultured odontoblast cells. Suppression substractive hybridization (SSH) was used to establish a substracted cDNA library specific for human odontoblasts. For this purpose, cDNAs from human cultured fibroblastic pulp cells were substracted to cDNA from human cultured odontoblasts. The nucleotide sequence of 154 substracted cDNA clones was determined. We identified 130 preferentially expressed gene fragments in odontoblasts as compared with the fibroblastic pulp cells. Ten of them were already identified in odontoblasts such as DSPP, BSP, enamelysin and Col1A1. We confirmed their overexpression by RT-PCR on the cultured cells and in vivo by in situ hybridization on human molars. Another 64 clones corresponded to known genes. Among them, two clones were of particular interest: reelin, which was first detected in the brain and osteoadherin, which was first located in bone. Fifty-six clones were unknown genes even though 82% matched expressed sequence tags or genomic clones. A reverse Northern dot blot showed that 96% of them were overexpressed at different rates in cultured odontoblasts. These latest results indicate that there are still unknown genes that are associated with the control of the odontoblast phenotype. Thus, cloning of odontoblast differentiation-associated genes not only opens up new methods of elucidating the normal development but also the recruitment of odontoblasts when required to initiate repair of dentin.  相似文献   

5.
The expression and localization of gap junctional proteins connexin (Cx) 26, 32, and 43 was examined in human dental pulp. Dental pulp tissues were obtained from human third molars immediately after extraction. Some pulp tissues were used for cell culture, and the rest for histological observations. Immunostaining for cultured dental pulp fibroblasts (DPFs) showed that Cx32 and 43 were expressed in human DPFs, and proteins corresponding to 27 (Cx32) and 43kDa (Cx43) were identified by Western blot analysis. Immunostaining for tissue sections showed that the expression of Cx32 and 43 was observed in the entire region of the pulp and further strong expression of Cx32 was established beneath the cell-rich zone. Considering the close relationship between Cx types and cell functions, the results indicate that DPFs beneath the cell-rich zone may have specific, Cx32-related functions. The cell rich zone is thought to contain progenitor odontoblasts that can be induced to differentiate into mature odontoblasts in response to wounding. Therefore, it may be hypothesized that DPFs just beneath the cell-rich zone produce proteins and induce odontoblast differentiation from the cells in the cell-rich zone.  相似文献   

6.
7.
8.
Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3–5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.This work was supported by Grant-in-Aid for Scientific Research to promote 2001-Multidisciplinary Research Projects in 2001–2005, and KAKENHI (C) (nos. 12671765 and 14571727 to H.O.) from MEXT  相似文献   

9.
Summary The distribution of laminin-like immunoreactivity in adult normal and denervated cat mandibular tooth pulps was studied by the use of fluorescence microscopy and pre-embedding immunogold electron microscopy. Immunoreactivity to collagen IV was also assessed in order to distinguish basement membranes. In normal pulps, light-microscope laminin-like immunoreactivity was strong along blood vessels and Schwann cell sheaths, and a faint immunoreactivity was seen also in the odontoblast layer. Electron microscopy confirmed the laminin-like immunoreactivity of endothelial and Schwann cell basement membranes at all pulpal levels. In the odontoblast layer and the predentine, nerve-like structures lacking basement membranes but possessing strong membrane laminin-like immunoreactivity were encountered. In addition, a clear-cut laminin-like immunoreactivity of plasma membranes of the somata and processes of odontoblasts was seen. Observations on denervated pulps as well as pulps in which nerve regeneration had taken place did not reveal any changes in the pattern of laminin-immunoreactivity in basement membranes or odontoblasts. Distribution of collagen IV-like immunoreactivity was very similar to laminin-like immunoreactivity in basement membranes of blood vessels and Schwann cells, and appeared unaffected by denervation. The odontoblasts and nerve-like profiles in the odontoblast layer were devoid of collagen IV-like immunoreactivity. We propose that odontoblast-associated laminin could be of significance as guidance for regenerating terminal pulpal nerve fibers to appropriate targets.  相似文献   

10.
Expression and localization of reelin in human odontoblasts.   总被引:2,自引:0,他引:2  
Reelin is a large extracellular matrix (ECM) glycoprotein strongly expressed during embryonic development in the central nervous system and involved in architectonic brain development. It could participate in axon plasticity processes or adhesion-recognition between nerve fibers in adulthood. Previously identified from a subtractive cDNA library of fully differentiated human odontoblasts, reelin might be involved in the relationship between dental nerves and odontoblasts in as so far the latter are in close association with pulpal nerve fibers. Here, we show by in situ hybridization and immunohistochemistry that reelin is specifically expressed by human odontoblasts in vivo and in vitro and that an intense expression of the reelin gene is detected in odontoblasts in comparison with pulpal cells (PC). Co-cultures of rat trigeminal ganglion (TG) and odontoblasts allow to mimic odontoblast innervation and demonstrate that neurites contact these cells with reelin molecules as observed in vivo in human dental pulp. Moreover, by RT-PCR, we show that both reelin receptors (namely apolipoprotein E receptor [ApoER-2], very low density lipoprotein receptor [VLDLR] and cadherin-related neuronal receptor [CNR]) and the cytoplasmic adapter Disabled-1 implicated in the reelin signal transduction, were expressed by trigeminal ganglion. On the basis of these data, we suggest that reelin might be an extracellular matrix molecule involved in the terminal innervation of the dentin-pulp complex, promoting adhesion between dental nerve endings and odontoblasts.  相似文献   

11.
Summary The relationship between odontoblasts and pulp capillaries in the process of dentinogenesis was studied in rat lower incisors, both on the labial and lingual sides, using light and transmission electron microscopy. The odontoblasts showed remarkable differences from the apical to the incisal end. Near the apical end of the tooth, immature odontoblasts, which were thought to be involved in the formation of the mantle dentin, were arranged in a single layer, and continuous capillaries were located just beneath the odontoblasts. In the middle of the tooth, mature odontoblasts with highly developed cell organelles and notable processes formed a pseudostratified layer; fenestrated capillaries were found between these cells close to the predentin. The height of the odontoblast layer and the rate of dentin deposition on the labial (enamel-related) side was significantly greater than that on the lingual (cementum-related) side. Near the incisal end, cementum-related odontoblasts gradually decreased in height and number to become post-odontoblasts that produced atubular dentin; continuous capillaries were located subjacent to the post-odontoblasts. On the labial (enamel-related) side, however, odontoblasts retained their pseudostratification; fenestrated capillaries were still observed in the odontoblast layer. No atubular dentin was formed on the labial side.  相似文献   

12.
The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300–360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.This work was supported in part by a grant from MEXT to promote 2001-multidisciplinary research project (in 2001–2005), KAKENHI (B) to H.O. (no. 16390523), and Daiwa Securities Health Foundation, Japan.  相似文献   

13.
Odontoblast-lineage cells acquire heat-shock protein (HSP)-25-immunoreactivity (IR) after they complete their cell division, suggesting that this protein acts as a switch between cell proliferation and differentiation during tooth development. However, there are few available data concerning the relationship between cell proliferation and differentiation following cavity preparation. The present study aims to clarify the expression of HSP-25 in the odontoblast-lineage cells with their proliferative activity after cavity preparation by immunocytochemistry for HSP-25 and cell proliferation assay using 5-bromo-2'-deoxyuridine (BrdU) labeling. In untreated control teeth, intense HSP-25-IR was found in odontoblasts and some subodontoblastic mesenchymal cells. Cavity preparation caused the destruction of odontoblasts and the disappearance of HSP-25-IR was conspicuous at the affected site, although some cells retained HSP-25-IR and subsequently most of them disappeared from the pulp-dentin border by postoperative day 1. Contrary, some subodontoblastic mesenchymal cells with weak HSP-25-IR began to take the place of degenerated cells, although no proliferative activity was recognizable in the dental pulp. Interestingly, proliferative cells in the dental pulp significantly increased in number on day 2 when the newly differentiating cells already arranged along the pulp-dentin border, and continued their proliferative activity in the wide range of the pulp tissue until day 5. These findings indicate that progenitor cells equipped in the subodontoblastic layer firstly migrate and differentiate into new odontoblast-like cells to compensate for the loss of the odontoblast layer, and subsequently the reorganization of dental pulp was completed by active proliferation of the mesenchymal cells occurring in a wide range of pulp tissue.  相似文献   

14.
The presence of lymphatic vessels in dental pulp has recently been controversial, and no conclusion has been reached. In this study, we investigated the control of lymphangiogenesis with dental pulp development in the mouse mandibular molar using VEGF-C, VEGF-D, and VEGFR-3 as indices of lymphatic vessel-controlling factors. In addition, to distinguish blood and lymphatic vascular epithelial cells, we performed immunohistochemical analysis using von Willebrand factor (vWF) and statistical analysis. In dental papilla in the bell-stage non-calcified period, mesenchymal cells positive for VEGF-C, VEGF-D, and VEGFR-3 increased and lumen-forming endothelial cells were noted, but vWF was negative, suggesting that these were actively forming lymphatic vessels. Positive undifferentiated mesenchymal cells, an increase in endothelial cells in dental pulp, and lumen expansion were noted early after birth. Positivity was also detected in the odontoblast layer and sheath of Hertwig after birth, suggesting that these factors also play important roles in odontoblast differentiation and maturation and periodontal ligament and tooth root formation. We embryologically clarified lymphatic vessel formation in dental pulp and a process of lymphatic vessel formation from blood vessels, suggesting involvement of the surrounding tissue, odontoblasts, and sheath of Hertwig in vessel formation.  相似文献   

15.
The cells of the subodontoblastic cell-rich layer in dental pulp are speculated to contain odontoblast progenitor cells because of their positional relationship with odontoblasts as well as their high alkaline phosphatase (ALP) activity. However, it has yet to be determined whether these cells have the ability to differentiate into odontoblastic cells. In the present study, we firstly found that the majority of cells in the subodontoblastic layer expressed Thy-1, a cell-surface marker of stem and progenitor cells. Then, we evaluated the capacity of Thy-1 high- and low-expressing (Thy-1(high) and Thy-1(low)) cells separated from rat dental pulp cells by use of a fluorescence-activated cell sorter to differentiate into hard tissue-forming cells in vitro and in vivo. Following stimulation with bone morphogenetic protein-2, Thy-1(high) cells in vitro showed accelerated induction of ALP activity and formation of alizarin red-positive mineralized matrix compared with Thy-1(low) cells. Furthermore, subcutaneous implantation of Thy-1(high) cells efficiently induced the formation of bone-like matrix. These results collectively suggest that Thy-1-positive dental pulp cells localized in the subodontoblastic layer had the ability to differentiate into hard tissue-forming cells, and thus these cells may serve as a source of odontoblastic cells.  相似文献   

16.
17.
The ultrastructure of the inner dental epithelial cells (IDE) and odontoblasts in elasmobranch (Raja erinacae) tooth buds was investigated by transmission electron microscopy to determine what contribution each cell type makes to the forming enameloid matrix. Row II, early stage, IDE cells contained few organelles associated with protein synthesis, whereas preodontoblasts appeared competent to initiate extracellular matrix production. Row III IDE cells are also devoid of organelles related to secretory protein synthesis, although these IDE cells accumulated large pools of intracellular glycogen. The glycogen appeared to be packaged into vesicles and exocytosed into the lateral extracellular space toward the forming enameloid matrix. Row III odontoblasts had a morphology consistent with an active protein secretory cell. No procollagen granules were present within the odontoblasts, however, nor were many collagen fibers observed in the enameloid matrix. Instead, non-collagenous "giant" fibers having 17.5-nm periodic cross striations were associated with the invaginations of odontoblast cell processes. Giant fibers, which spanned a clear zone adjacent to the odontoblasts, terminated within the enameloid matrix. Smaller 25-nm-wide "unit" fibers emanated from the giant fiber tips to form the bulk of the enameloid matrix. The clear zone, which separated the odontoblasts from the enameloid matrix at early stages, diminished in size at later stages until the odontoblast processes were completely embedded in the enameloid matrix. Nascent enameloid crystallites were observed only after a layer of unmineralized predentin was deposited beneath fully formed enameloid matrix. The results suggest that the major constituent of the enameloid matrix in skates is a non-collagenous protein derived from the odontoblasts. The inner dental epithelial cells appear to contribute large quantities of carbohydrates to the forming enameloid matrix.  相似文献   

18.
In an organ culture system under a three-dimensional microenvironment that provides the conditions needed for odontoblast differentiation, a row of odontoblasts can be induced (Kikuchi et al. 1996, 2001). Therefore, in a newly designed three-dimensional cell culture system that fulfils the conditions necessary for odontoblast differentiation (Kikuchi et al. 2002), we examined whether dental papilla cells in rat mandibular incisors could differentiate into tubular dentine-forming cells. In our previously established organ culture system, CM-Dil-labeled cells that were microinjected into isolated dental papillae were replaced by a row of odontoblasts. In a three-dimensional cell culture system, which consists of two kinds of type I collagen in the upper layer over multi-layered cells seeded onto collagen containing Matrigel in the lower layer and which acts as a structural meshwork, dental papilla cells were incubated as multi-layered cells in an artificial extracellular matrix (ECM). The cells aggregated to form a cell mass and invaginated as a cell mass into the ECM. The cells also extended fine fibrillar processes into the ECM. With regard to invagination, the proteolytic activities of matrix metalloproteinase-2 (MMP-2)/membrane type 1-matrix metalloproteinase (MT 1-MMP) were observed on the outer multi-layers of cells within a cell mass adjacent to the ECM. The cell mass progressively shrank to about one-half to one-third of its original diameter and was organized as a tissue surrounded by a newly secreted ECM, like dental pulp-dentine. The cells adjacent to the secreted ECM were constructed as a row of polarized columnar cells. They extended slender processes into the new ECM, which is characteristic of tubular matrix. Dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP 1) genes, which are specific for odontoblast differentiation, were expressed in an aggregated cell mass where tubular matrix-forming cells were induced. Furthermore, the tubular matrix became mineralized under prolonged culture. These results imply that the putative progenitor cells/stem cells residing in dental papillae can differentiate into odontoblasts under appropriate conditions in vitro.  相似文献   

19.
Nitric oxide synthases (NOS) are important enzymes present in different cells such as endothelial cells, macrophages, etc. Recently, it has been found that nitric oxide (NO) is responsible for vasodilation, blood pressure regulation, platelet aggregation, cardiac contractility, and the mediation of immunity during bacterial infections and inflammation. However, the production and role of NO in various structures of the oral cavity have not been investigated extensively. The aim of this study was to evaluate the presence of e-NOS in healthy human odontoblasts and endothelial cells of the dental pulp. Twenty healthy human dental pulps were collected and frozen and pulp slices were obtained using a cryostat. The e-NOS enzyme was revealed by immunohistochemical analysis and the enzyme level was detected by Western blotting and mRNA expression by RT-PCR. The immunohistochemical results demonstrated, for the first time, the presence of e-NOS in odontoblasts and in endothelial cells. The presence of e-NOS m-RNA was confirmed by RT-PCR and the expression of the protein by Western blotting. These results clearly show that the e-NOS enzyme is present in both odontoblasts and endothelial cells of healthy human pulp. The presence of e-NOS in the odontoblast and endothelial cells of the dental pulp may mediate local vasodilation and cell proliferation.  相似文献   

20.
S100-immunoreactivity (ir) was examined in tooth pulp primary neurons of the rat. An immunofluorescence method demonstrated that the molar tooth pulp contained S100-immunoreactive (ir) nerve fibers. In the root pulp, pulp horn and roof of the pulp chamber, S100-ir smooth and varicose fibers ramified and formed subodontoblastic nerve plexuses. All the fibers became varicose at the base of the odontoblastic layer and extended to the odontoblastic layer. Some varicose endings could be traced into the dentin. The trigeminal neurons retrogradely labeled with fluorogold (FG) from the first and second maxillary molar tooth pulps exhibited S100- and parvalbumin-ir. Approximately 60% and 24% of the labeled cells were ir for S100 and parvalbumin, respectively. Virtually all parvalbumin-ir FG-labeled cells showed S100-ir, while 40% of S100-ir ones coexpressed parvalbumin-ir. An immunoelectron microscopic method revealed that all myelinated axons and half of the unmyelinated axons in the root pulp contained S100-ir. In the odontoblastic layer, predentin and dentin, S100-ir neurites lost the Schwann cell ensheathment and made close contact with cell bodies and processes of odontoblasts. The odontoblastic layer also contained parvalbumin-ir neurites. These neurites were devoid of the Schwann cell ensheathment and in close apposition to cell bodies and processes of odontoblasts. S100-ir pulpal axons seemed to be insensitive to repeated neonatal capsaicin treatment. This study suggests that S100-ir tooth pulp primary neurons are mostly myelinated and that S100-ir unmyelinated axons in the root pulp are preterminal segments of myelinated stem axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号