首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
用基因组重排技术选育赖氨酸高产菌株   总被引:6,自引:1,他引:5  
赵凯  段巍  孙立新  周东坡 《微生物学报》2009,49(8):1075-1080
摘要:【目的】以北京棒杆菌(Corynebacterium pekinense)1为研究对象,选育赖氨酸高产菌株,并探索赖氨酸产生菌基因组重排育种的基本规律。【方法】利用基因组重排技术选育赖氨酸高产菌株。【结果】通过四轮基因组重排成功选育出了5株遗传稳定的高产赖氨酸菌株,其中1株重排菌株赖氨酸产量达到16.95 g/dL,比原始菌株Corynebacterium pekinense 1赖氨酸产量提高了37.14%,比亲本菌株赖氨酸产量提高了17.46%~31.19%。【结论】首次采用基因组重排技术改良赖氨酸产生菌,成功选育出了5株产量较稳定的高产赖氨酸菌株,具有潜在的应用价值。  相似文献   

2.
以壮观链霉菌(Streptomyces spectabilis)为研究对象,采用基因组重排技术与传统诱变育种相结合的方法选育大观霉素的高产菌株.通过原生质体紫外诱变获得壮观链霉菌突变体群体,高产突变菌株间进行两轮的基因组重排,筛选的高产菌株用NTG诱变得新霉素和链霉素的抗性突变菌株,抗性突变菌株间进行两轮基因组重排,从...  相似文献   

3.
以短乳杆菌为研究对象,通过基因组重排技术选育胸苷磷酸化酶高产菌株。首先采用紫外复合诱变筛选出EA42、EB27作为基因组重排育种的亲本并制备成原生质体,分别采用紫外照射50min和60℃水浴加热60min双亲灭活原生质体,然后用质量分数40%PEG6000,30℃恒温诱导融合10min进行基因组重排。经过3轮基因组重排育种,成功选育出3株胸苷磷酸化酶高产菌株,其中菌株F3-36在菌体发酵量提高的前提下,进行5次传代测试其胸苷磷酸化酶活均在2.500U/mg湿菌体,比原始菌株酶活提高了260%。  相似文献   

4.
可利霉素是通过基因工程定向育种技术获得的新型大环内酯类抗生素,是国家一类新药.[目的]为满足工业化生产需要,其工程菌株的发酵水平有待提高.[方法]多种常规诱变技术交替处理和高通量筛选方法选育可利霉素高产菌株,处理方法包括原生质体紫外诱变、DES(硫酸二乙酯)诱变、紫外光复活诱变、缬氨酸抗性筛选和正突变菌株的富集.[结果]高产菌株WSJ-1-7-49-133-82-43的摇瓶生物效价比出发菌株WSJ-1-7-49提高56%,500L中试发酵罐突变菌株效价较出发株高61%.[结论]说明多轮常规诱变育种结合高通量的筛选方法可以用于工业生产菌株的高效筛选.  相似文献   

5.
里氏木霉(Trichoderma reesei)被认为是最合适联合生物加工(consolidated bioprocessing)的微生物之一。原始里氏木霉菌株产乙醇能力太低,需要进一步提高其产酒量。我们通过基因组重排技术提高了里氏木霉菌株产乙醇能力和乙醇耐受力。首先对CICC40360菌株孢子进行NTG诱变得到正向突变菌株,再以此为出发菌株进行基因组重排。进行基因组重排后,重组菌株在含不同乙醇浓度的原生质体再生培养基上进行筛选。突变菌株和原始菌株一起做摇瓶发酵实验进行比较以确定产乙醇能力的提高。经过两轮基因组重排后,筛选获得表现最优异的重组菌S2-254。该菌株能在利用50g/l葡萄糖发酵出6.2g/l乙醇,同时能耐受3.5% (v/v)浓度乙醇。上述结果表明,本实验采用的基因组重排技术能够有效而且快速获得具有目的性状的优良菌株。  相似文献   

6.
谷氨酰胺转胺酶(TGase)的产量不足的问题一直限制其工业化生产规模,故采用基因组重排的方法,筛选高产谷氨酰胺转胺酶菌株。通过对不同制备条件下原生质体纯度和形成率的考量,获得制备原生质体的最优条件为以6mg/ml的溶菌酶浓度进行酶解,酶解时间2h。再优化融合条件,以2min紫外灭活和40min热灭活结合的方法挑选出融合子。通过两轮基因组重排,经过96孔板发酵高通量筛选和摇瓶发酵复筛验证,获得了一株产酶达7.12U/ml的茂源链霉菌,相比最初选用菌株的平均酶活提高65.5%。发酵结果显示,酶活提高的原因可能是在重组后原酶成熟更快、更彻底,且得到的菌株遗传稳定性良好。证明基因组重排能够有效提高菌株的产酶水平,同时为谷氨酰胺转胺酶产量提高提供理论依据。  相似文献   

7.
谷氨酰胺转胺酶(TGase)的产量不足的问题一直限制其工业化生产规模,故采用基因组重排的方法,筛选高产谷氨酰胺转胺酶菌株。通过对不同制备条件下原生质体纯度和形成率的考量,获得制备原生质体的最优条件为以6mg/ml的溶菌酶浓度进行酶解,酶解时间2h。再优化融合条件,以2min紫外灭活和40min热灭活结合的方法挑选出融合子。通过两轮基因组重排,经过96孔板发酵高通量筛选和摇瓶发酵复筛验证,获得了一株产酶达7.12U/ml的茂源链霉菌,相比最初选用菌株的平均酶活提高65.5%。发酵结果显示,酶活提高的原因可能是在重组后原酶成熟更快、更彻底,且得到的菌株遗传稳定性良好。证明基因组重排能够有效提高菌株的产酶水平,同时为谷氨酰胺转胺酶产量提高提供理论依据。  相似文献   

8.
淀粉酶产生菌的筛选、鉴定及其发酵条件优化   总被引:2,自引:2,他引:0  
[背景]淀粉酶可以水解淀粉,在淀粉制糖、白酒、黄酒、啤酒和食醋等食品发酵行业有着广泛的应用.[目的]从高温酒曲中筛选获得产淀粉酶的芽孢杆菌属菌株,并对其进行分类鉴定和产淀粉酶发酵条件优化,为发酵过程提供优良的淀粉酶资源.[方法]取高温酒曲,经过富集培养和可溶性淀粉平板筛选培养基初筛,摇瓶复筛得到高产淀粉酶的菌株;通过菌...  相似文献   

9.
【目的】选育ε-聚赖氨酸(ε-PL)高产菌,并探究不同碳源对其发酵性能的影响。【方法】借助基因组重排和核糖体工程两种育种手段强化ε-PL产生菌的合成能力,并利用p H冲击工艺评价不同碳源对ε-PL发酵的影响。【结果】经过4轮基因组重排和4轮核糖体工程连续选育,获得1株高产突变株Streptomyces albulus GS114,其摇瓶ε-PL产量达到3.0 g/L,较出发菌提高了1.7倍。该改造菌株在5 L发酵罐中分别以葡萄糖和甘油为碳源进行192 h的补料-分批发酵时,ε-PL发酵产量分别达到了43.4 g/L和45.7 g/L,较出发菌提高了11.0%和14.9%,而菌体量分别减少了24.0%和33.2%,ε-PL得率提高了34.2%和30.7%。【结论】基因组重排结合核糖体工程育种是一种有效的ε-PL高产菌选育手段,研究结果将为ε-PL高产菌改造和工业生产碳源选择提供直接指导。  相似文献   

10.
[目的]筛选高产漆酶菌株。[方法]利用愈创木酚-PDA平板筛选高产漆酶菌株,单因素实验确定最佳产酶条件。[结果]筛选到一株高产漆酶菌株,编号QMJZ-5。结合形态观察和5.8S rDNA-ITS序列分析,确定该菌株是血红密孔菌(Pycnoporus coccineus),优化发酵培养基:甘油20 g/L,豆粕6.0 g/L,香兰素0.15 g/L,阿魏酸0.15 g/L,KH_2PO_41.0 g/L,Na_2HPO_4·12H_2O 0.2 g/L,CuSO_4·5H_2O 1.5 mmol/L,初始pH 5.0,30℃,发酵8 d,产酶55 U/m L。[结论]筛选到1株高产漆酶菌株。  相似文献   

11.
Several microorganisms are known for their efficient anaerobic conversion of glycerol to 1,3-propanediol, with Clostridium diolis DSM 15410 as one of the better performers in terms of molar yield and volumetric productivity. However, this performance is still insufficient to compete with established chemical processes. Previous studies have shown that high concentrations of 1,3-propanediol, glycerol, and fermentation side products can limit the productivity of C. diolis DSM 15410. Here, we describe the use of genome shuffling for improved 1,3-propanediol fermentation by the strict anaerobe C. diolis DSM 15410. By using chemical mutagenesis, strains with superior substrate and product tolerance levels were isolated and higher product yields were obtained. These superior strains were then used for genome shuffling and selection for 1,3-propanediol and organic acid tolerance. After four rounds of genome shuffling and selection, significant improvements were observed, with one strain attaining a 1,3-propanediol volumetric yield of 85 g/liter. This result represents an 80% improvement compared to the yield from the parental wild-type strain.The use of biomass instead of petrochemical feedstock could facilitate the sustainable production of many chemicals, but this approach has proven economically feasible in only a few cases (4, 17, 20, 21). The microbial production of 1,3-propanediol (1,3-PD) provides an interesting case study because this monomer is used to produce several plastics, including the relatively new and highly versatile polytrimethylene terephthalate, which has significantly increased demand for 1,3-PD (12, 23, 24). Polytrimethylene terephthalate is currently produced from petrochemical feedstock in a process that involves the conversion of ethylene oxide into 3-hydroxypropionaldehyde by hydroformylation under high pressure and then further into 1,3-PD by hydrogenation using a nickel or rubidium catalyst (21).Several companies have investigated the sustainable production of 1,3-PD from biomass. For example, DuPont and Genencor transferred the relevant 1,3-PD biosynthetic genes from Klebsiella pneumonia into Escherichia coli and further modified carbohydrate metabolism and transport so that 1,3-PD could be synthesized from glucose (10, 11; M. Emptage, S. L. Haynie, L. A. Laffend, J. Pucci, and G. M. Whited, 2001, Patent Cooperation Treaty international application WO 2001/01/12833). Large-scale production of 1,3-PD by this approach is likely to be too expensive due to the high input costs of vitamin B12 and antibiotics, so the use of glycerol as an alternative feedstock has been investigated, although this strategy requires additional enzymes and a shift from aerobic to anaerobic conditions (15, 25, 30).Clostridium diolis DSM 15410 (formerly C. butyricum DSM 5431) can produce 1,3-PD from glycerol under anaerobic conditions and is therefore a desirable alternative to E. coli given the relative costs of industrial aerobic and anaerobic fermentation (6, 8, 9, 22). However, the efficiency of conversion is not yet high enough for an industrial process. The production of 1,3-PD by C. diolis is limited by inhibition from both substrates and products, as well as organic acids produced as fermentation by-products (13).Classical strain improvement has significantly increased 1,3-PD production, but this is a slow process and the mutations are predominantly neutral or detrimental (2). We have therefore approached the problem using genome shuffling, which is more efficient and reliable for engineering complex phenotypes, as demonstrated in several other examples of microbial strain development (16, 26, 31). Genome shuffling offers the advantages of accumulated beneficial mutations and the removal of unnecessary mutations due to simultaneous changes at different positions throughout the genome and, therefore, yields microbes of superior fitness (29). We applied both the classical approach and genome shuffling to C. diolis DSM 15410 to improve the production of 1,3-PD, which is a necessary prerequisite for the fermentation process. To our knowledge, this study is the first example of genome shuffling in a strictly anaerobic microorganism.  相似文献   

12.
以肺炎克雷伯氏杆菌(Klebsiella pneumoniae)为研究对象,应用原生质体紫外诱变技术提高其对甘油及1,3-丙二醇的耐受性,获得1,3-丙二醇高产菌.在原生质体制备过程中,运用滤膜去除酶解后细胞悬液中的正常菌体,简化菌体酶解过程,提高再生率及形成率.经过原生质体诱变后,以耐受高浓度甘油和1,3-丙二醇及高产酸能力为筛选方向,最终筛选到了3株高产菌株(Kp-1、Kp-4和Kp-5).在补料发酵实验中,上述诱变菌产1,3-丙二醇能力分别为70.24 、65.21和75.51 g/L,比野生菌株WT(55.78 g/L)分别提高了25.92%、16.91%和35.37%.  相似文献   

13.
Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.  相似文献   

14.
【目的】提高克雷伯氏菌胞内还原力以强化1,3-丙二醇合成。【方法】将来源于大肠杆菌的木糖异构酶基因在克雷伯氏菌中异源表达,构建重组菌。研究重组菌添加不同浓度木糖为辅底物与甘油共发酵过程中代谢产物和NADH的变化规律。【结果】与对照菌相比,重组菌细胞内还原力NADH提高了0.1?0.3倍,1,3-丙二醇产量达到23.31 g/L,提高20%,1,3-丙二醇转化率从0.60 mol/mol提高到0.73 mol/mol。【结论】木糖异构酶基因的表达强化了木糖代谢途径,经磷酸戊糖途径积累大量还原力,促进了1,3-丙二醇的生成。  相似文献   

15.
产1,3-丙二醇菌株的诱变和筛选   总被引:5,自引:0,他引:5  
为提高克雷伯氏肺炎杆菌产1,3-丙二醇的能力,以离子束、紫外线和氯化锂为复合诱变法,建立了产酸圈和产物耐受相结合的平板筛选方法,获得可耐受高浓度1,3-丙二醇并且副产物中乙醇含量较少的优良突变菌株2株。与出发菌株相比,两株高产突变菌株Klebsiella pneumoniae LM 03和Klebsiella pneumoniae LM05的1,3-丙二醇产量分别提高了33% 和30% ,达到66.74 g/L和65.12 g/L;乙醇产量分别降低了38% 和24% ,降低为6.59 g/L和8.05 g/L。同时测定了诱变前后还原途径中甘油脱水酶(GDHt)和1,3-丙二醇氧化还原酶(PDOR)的酶活变化,研究表明诱变对GDHt有明显的促进作用,而对PDOR的影响不明显。该诱变和筛选方法目标明确、易操作、效率高,在1,3-PD工业规模的生物法生产中将具有良好的应用价值,而且对于其他具有工业应用价值的菌株筛选工作也具有一定的借鉴意义。  相似文献   

16.
1,3-Propanediol oxidoreductase encoded by dhaT gene, a gene of 1,3-propanediol regulon, is important in converting glycerol to 1,3-propanediol in Klebsiella pneumoniae. DhaT gene was amplified from the genome of K. pneumoniae, sequenced and its amino acid sequence deduced. A predicted secondary structure and 3D-structural model was constructed by homology modelling. Based on these results, we infer that 1,3-propanediol oxidoreductase belongs to NAD(P)-dependent alcohol dehydrogenase group III of iron-activated dehydrogenases.  相似文献   

17.
Clostridium butyricum is to our knowledge the best natural 1,3-propanediol producer from glycerol and the only microorganism identified so far to use a coenzyme B12-independent glycerol dehydratase. However, to develop an economical process of 1,3-propanediol production, it would be necessary to improve the strain by a metabolic engineering approach. Unfortunately, no genetic tools are currently available for C. butyricum and all our efforts to develop them have been so far unsuccessful. To obtain a better "vitamin B12-free" biological process, we developed a metabolic engineering strategy with Clostridium acetobutylicum. The 1,3-propanediol pathway from C. butyricum was introduced on a plasmid in several mutants of C. acetobutylicum altered in product formation. The DG1(pSPD5) recombinant strain was the most efficient strain and was further characterized from a physiological and biotechnological point of view. Chemostat cultures of this strain grown on glucose alone produced only acids (acetate, butyrate and lactate) and a high level of hydrogen. In contrast, when glycerol was metabolized in chemostat culture, 1,3-propanediol became the major product, the specific rate of acid formation decreased and a very low level of hydrogen was observed. In a fed-batch culture, the DG1(pSPD5) strain was able to produce 1,3-propanediol at a higher concentration (1104 mM) and productivity than the natural producer C. butyricum VPI 3266. Furthermore, this strain was also successfully used for very long term continuous production of 1,3-propanediol at high volumetric productivity (3 g L-1 h-1) and titer (788 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号