首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

2.
To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented.  相似文献   

3.
The Japanese quail (Coturnix japonica; JQ) is one of the domesticated fowl species of Japan. To provide DNA sequence information for examination of its phylogenetic position in the order Galliformes, the complete sequence of the JQ mitochondria was determined. Sequence analysis revealed that the JQ mitochondrial genome is a circular DNA of 16 697 basepairs (bp), which is smaller than the chicken mitochondrial DNA of 16 775 bp, but the genomic structure of JQ mitochondria was the same as that of the chicken. The sequence homologies of all mitochondrial genes including those for 12S and 16S ribosomal RNA (rRNA), between Japanese quail and chicken ranged from 78.0 to 89.9%. Because the sequences of NADH dehydrogenase subunit 2 and cytochrome b genes had been reported in five species [Phasianus colchicus (ring-neck pheasant: RP), Gallus gallus domesticus (chicken: CH), Perdix perdix (grey partridge: GP), Bambusicola thoracia (Chinese bamboo partridge: CP), and Aythya americana (redhead: RH)], the concatenated nucleotide sequences (2184 bp) and amino acid sequences of these two genes were used in a phylogenetic analysis of JQ against these five species using a maximum likelihood (ML) method. Using the first and second bases of the codons, and the third base of the codons indicated a phylogenic tree of [RH, (RP, GP), (JQ, (CH, CP))]. A phylogenic tree of [RH, JQ, (RP, GP), (CH, CP)] was determined using amino acid sequences. Because the local bootstrap values for the JQ branch in these trees are not high, additional sequence is necessary for construction of a reliable tree.  相似文献   

4.
鸡形目鸟类系统发生研究现状   总被引:2,自引:2,他引:0  
综合形态学、行为学、分子系统发生等方面研究成果,对世界鸡形目鸟类科的系统关系以及属、种间系统发生的研究进展进行了阐述,侧重介绍与我国鸡形目鸟类相关类群的系统发生研究现状。与传统的系统关系比较,新的研究结果主要有:凤冠雉科和冢雉科不再是互为姊妹群;传统分类中的雉族和鹑族被证明并非单源而是多源的;雉族的原鸡属与鹑族的竹鸡属有很近的亲缘关系;灰山鹑、火鸡和松鸡类的系统发生关系可能很近。分子进化的研究表明雉科各属的起源主要集中在上新世。  相似文献   

5.
A novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica) was isolated from genomic DNA digested with restriction endonuclease, Bg/II. Sequence analysis of three different-size clones revealed the presence of a tandem array of a GC-rich 41 bp repeated element. This sequence was localized by fluorescence in situ hybridization (FISH) primarily to microchromosomes of Japanese quail (2n = 78); approximately 50 of the 66 microchromosomes showed positive signals, although hybridization signals were also detected on chromosomes 4 and W. This satellite DNA did not cross-hybridize with genomic DNA of chicken (Gallus gallus) and Chinese painted quail (Excalfactoria chinensis) under moderately stringent conditions, suggesting that this class of repetitive DNA sequences was species specific and fairly divergent in Galliformes species.  相似文献   

6.
We conducted comparative chromosome painting and chromosome mapping with chicken DNA probes against the blue-breasted quail (Coturnix chinensis, CCH) and California quail (Callipepla californica, CCA), which are classified into the Old World quail and the New World quail, respectively. Each chicken probe of chromosomes 1-9 and Z painted a pair of chromosomes in the blue-breasted quail. In California quail, chicken chromosome 2 probe painted chromosomes 3 and 6, and chicken chromosome 4 probe painted chromosomes 4 and a pair of microchromosomes. Comparison of the cytogenetic maps of the two quail species with those of chicken and Japanese quail revealed that there are several intrachromosomal rearrangements, pericentric and/or paracentric inversions, in chromosomes 1, 2 and 4 between chicken and the Old World quail. In addition, a pericentric inversion was found in chromosome 8 between chicken and the three quail species. Ordering of the Z-linked DNA clones revealed the presence of multiple rearrangements in the Z chromosomes of the three quail species. Comparing these results with the molecular phylogeny of Galliformes species, it was also cytogenetically supported that the New World quail is classified into a different clade from the lineage containing chicken and the Old World quail.  相似文献   

7.
Chicken microsatellite primers are not efficient markers for Japanese quail   总被引:5,自引:0,他引:5  
Domestic fowl or chicken (Gallus gallus) and Japanese quail (Coturnix japonica) belong to the family Phasianidae. The exchange of marker information between chicken and quail is an important step towards the construction of a high-resolution comparative genetic map in Phasianidae, which includes several poultry species of agricultural importance. We tested chicken microsatellite markers to see if they would be suitable as genetic linkage markers in Japanese quail. Twenty-six per cent (31/120) of chicken primers amplified individual loci in Japanese quail and 65% (20/31) of the amplified loci were found to be polymorphic. Eleven of the polymorphic loci were excluded as uninformative because of the lack of amplification in some individuals or high frequency of nonspecific amplification. The sequence information of the remaining nine loci revealed six of them to contain microsatellites that were nearly identical with those of the orthologous regions in chicken. For these six loci, allele frequencies were estimated in 50 unrelated quails. Although the very few chicken markers that do work well in quail could be used as anchor points for a comparative mapping, most chicken markers are not useful for studies in quail. Therefore, more effort should be committed to developing quail-specific markers rather than attempting to adapt chicken markers for work in quail.  相似文献   

8.
D P Frisby  R A Weiss  M Roussel  D Stehelin 《Cell》1979,17(3):623-634
The chicken is a domesticated form of Red Jungle-fowl (Gallus gallus), which belongs to the Pheasant family (Phasianidae) within the order Galliformes. Domestic chickens carry the genome of the endogenous retrovirus RAV-O as DNA sequences integrated into host chromosomes transmitted through the germ line. We have examined the presence and distribution of RAV-O-related sequences in the DNA of Red Junglefowl and other closely related species of Junglefowl, as well as more distantly related Pheasants and Quail. DNA sequences homologous to RAV-O were analyzed by molecular hybridization in liquid and after electrophoresis of restriction endonuclease fragments. The presence of RAV-O-related sequences in avian DNA does not correlate with phylogenetic relationships. Under stringent conditions of hybridization in liquid, DNA sequences homologous to RAV-O cDNA were detected at high levels (greater than 80% homology( only in the genomes of the domestic chicken and its phylogenetic ancestor, the Red Junglefowl (Gallus gallus). The DNA of two other species of Gallus (G. sonnerati, Sonnerat's Junglefowl and G. varius, Green Junglefowl), of Ring-necked Pheasant and of Japanese Quail contained sequences with less than 10% homology to RAV-O cDNA. Under conditions permitting mismatching, however, Ring-necked Pheasant DNA hybridized up to 50% of the RAV-O cDNA, and Quail DNA 24%, whereas the extent of hybridization to Sonnerat's and Green Junglefowl DNA was not markedly increased. Analysis of restriction enzyme digests revealed several distinct fragments of DNA hybridizing to chick retrovirus cDNA in both Red Junglefowl and domestic chicken, and multiple fragments in DNA from two species of Phasianus. No fragments with sequences related to chicken retroviruses were found, however, in digests of DNA prepared from Sonnerat's, Ceylonese and Green Junglefowl, from two other Pheasant genera (Chrysolophus and Lophura), or from one Quail genus (Coturnix). Thus the DNA of three Junglefowl species closely related to Gallus gallus lacked RAV-O sequences while the DNA of more distantly related Phasianus species showed significant homology. These results show that RAV-O-related sequences have not diverged together with the normal host genes during the evolution of the Phasianidae. Although RAV-O sequences are endogenous in all domestic chickens and Red Junglefowl studied thus far, it appears that the RAV-O genome has been introduced relatively recently into the germ line of Gallus gallus, following speciation but before domestication, and independently of the related sequences found in members of the genus Phasianus.  相似文献   

9.
Smith EJ  Shi L  Tu Z 《Genetica》2005,124(1):23-32
Mitochondrial DNA (mtDNA) sequences remain the most widely used for phylogenetic analysis in birds. A major limitation of mtDNA sequences, however, is that mitochondria genes are inherited as a single linkage group. Here we describe the use of a 540-bp DNA sequence corresponding to the G3 domain of Gallus gallus nuclear aggrecan gene (AGC1) for phylogenetic analysis of the main groups of Galliformes including Phasianidae, Numididae, and Odontophoridae. We also included species from Cracidae and Megapodiidae which are considered by some as Craciformes and others, including here as Galliformes. The uncorrected sequence divergence of the G3 fragments ranges from 1 among the grouses to 36% between some of the distant groups within Galliformes. These sequences contain 39–48% AT nucleotides and the ratios of transition versus transversion are above 1.5 in majority of the comparisons. Using G3 sequences from an Anseriform, Oxyura jamaicensis, as out-groups, phylogenetic trees were obtained using maximum parsimony and distance algorithms and bootstrap analyses. These trees were consistent with those described using Avian sarcoma and leucosis virus gag genes and those from amino acid sequences of hemoglobin and lysozyme c. Our data also support relationships among Galliformes which were defined using mtDNA sequences. In addition to the general support of the five main families of Galliformes, our data are also consistent with previous work that showed Francolinus africanus and Gallus gallus are in the same clade and that Tetraoninae is a well-supported monophyletic subfamily within Phasianidae. The results presented here suggest that the AGC1 sequences meet the criterion of novel nuclear DNA sequences that can be used to help resolve the relationships among Galliformes.  相似文献   

10.
Phasianus colchicus alaschanicus, Phasianidae, Galliformes is known only from the Helan Mountains of Ningxia and Inner Mongolia Autonomous Regions, China. Due to few studies on this subspecies, the taxonomic status of Phasianus colchicus alaschanicus in Galliformes is unclear. We sequenced the mitochondrial genome of one P. c. alaschanicus and downloaded 36 species of 22 genera from GeneBank to construct a phylogenetic tree based on the Maximum Likelihood (ML) method. The mitochondrial genome sequence length of P. c. alaschanicus was 16,688 bp with a base composition of 30.6% A, 25.3% T, 30.8% C, and 13.3% G, including two rRNA genes (12S rRNA, 16S rRNA), 22 tRNA genes, 13 protein-coding genes, and a control region. We confirmed the genetic classification status of P. c. alaschanicus in Galliformes. The Phasianidae formed a complex clade, which could be separated into eighteen lineages. P. c. alaschanicus was a sister group of the remaining taxa (posterior probabilities 100% in ML).  相似文献   

11.
The blue-breasted quail (Coturnix chinensis), the smallest species in the order Galliforms, is a candidate model animal for avian developmental engineering because it is precocious and prolific. This species requires 17 days to hatch and 8 to 9 weeks to mature to an adult body weight of about 50 g, whereas the Japanese quail (Coturnix japonica) requires 16 days to hatch and 6 to 8 weeks to mature to an adult body weight of 100 to 150 g. The early embryo is the most challenging embryonic stage in terms of culture and manipulation for avian biotechnology. We have evaluated various conditions for the culture of blue-breasted quail embryos from the blastoderm stage to hatching. A hatchability rate of 26% (10/39) is among the best of the various culture conditions examined in the present study and the embryo culture system should facilitate advances in avian biotechnology.  相似文献   

12.
We tested the hypothesis that the Algerian hedgehog (Atelerix algirus) consumes smaller eggs in preference to larger ones and that the colour of the eggs (brown or white spotted) does not influence the egg consumption rate. Eggs of three galliform species (the quail, Coturnix japonica; the red legged partridge, Alectoris rufa; the chicken, Gallus domesticus) were offered to 14 individual hedgehogs under experimental conditions. Overall, the hedgehogs consumed 107 of the 225 eggs offered (48%) in 5 days. The colour of the eggs did not influence the rates of egg consumption. However, egg size had a significant influence on the rates of egg consumption. Generalized linear mixed models showed that hedgehogs preferred to consume smaller quail eggs (91%, n = 65) than intermediate partridge eggs (44%, n = 110), whereas the largest chicken eggs (n = 50) were not consumed at all. There was a strong inter-individual variation in egg consumption, particularly of partridge eggs, from 0 to 100%, whereas individual variation in consumption of quail eggs was lower, from 70 to 100%.  相似文献   

13.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

14.
Many birds use carotenoid pigments to acquire rich red, orange, and yellow coloration in feathers and bare parts that is used as a signal of mate quality. Because carotenoids are derived from foods, much attention has been paid to the role of diet in generating color variation both within and among avian species. Less consideration has been given to physiological underpinnings of color variability, especially among species. Here, I surveyed published literature (e.g. captive feeding studies) on carotenoid assimilation in six bird species and completed additional controlled carotenoid-supplementation experiments in two others to consider the ability of different taxa to extract carotenoids from the diet in relation to phylogeny and coloration. I found that, for a given level of carotenoids in the diet, passerine birds (zebra finch, Taeniopygia guttata; house finch, Carpodacus mexicanus; American goldfinch, Carduelis tristis; society finch, Lonchura domestica) exhibit higher levels of carotenoids in circulation than non-passerines like gamebirds (domestic chicken, Gallus domesticus; red junglefowl, Gallus gallus; Japanese quail, Coturnix coturnix; red-legged partridge, Alectoris rufa). This difference in carotenoid accumulation is likely due to interspecific variation in micelle, chylomicron, or lipoprotein concentrations or affinities for xanthophyll carotenoids. Passerine birds more commonly develop carotenoid-based colors than do birds from ancient avian lineages such as Galliformes, and the physiological differences I uncover may explain why songbirds especially capitalize on carotenoid pigments for color production. Ultimately, because we can deconstruct color traits into component biochemical, physical, and physiological parts, avian color signals may serve as a valuable model for illuminating the proximate mechanisms behind interspecific variation in signal use in animals.  相似文献   

15.
Short of a complete genomic DNA sequence, sequence tagged sites (STSs) have emerged as major genomic reagents for the genetic analysis of little-studied ecologically and agriculturally important organisms. Here, we report STS developed for the turkey (Meleagris gallopavo), guinea fowl (Numidea meleagris), Japanese quail (Coturnix coturnix) and pigeon using primers specific for reference DNA sequences of two chicken (Gallus gallus) genes, aggrecan (agc1) and type X collagen (col10). Additional STSs were also developed for turkey, quail and chicken using primers specific for the human apobec-1 gene. The total length of the STSs developed was 5990, 2522, 4127, 1539 and 6600 bp for the turkey, guinea fowl, Japanese quail, pigeon and chicken, respectively. Based on splice site consensus GT and AG sequences, four of the seven agc1-based chicken STS appear to contain introns. The human gene-based STSs showed no significant sequence identity with the reference GenBank sequences. Maximum likelihood, maximum parsimony and neighbour-joining analysis of an agc1-based STS that was common to all five species showed phylogenetic relationships consistent with those previously defined using mitochondria DNA sequences and nuclear gene restriction maps. Additionally, several putative single nucleotide polymorphisms (SNPs) were detected within the STSs, including eight in the turkey, two in the quail, and two in the chicken when multiple sequences were evaluated from each species. This report describes new STSs that are resources for genetic and physical mapping and genome analysis within and among avian species. These resources should further aid in our understanding of the biology of agriculturally important but little-studied guinea fowl and turkey. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
In line with the Gifu University''s initiative to map the Japanese quail genome, a total of 100 Japanese quail microsatellite markers isolated in our laboratory were evaluated in a population of 20 unrelated quails randomly sampled from a colony of wild quail origin. Ninety-eight markers were polymorphic with an average of 3.7 alleles per locus and a mean heterozygosity of 0.423. To determine the utility of these markers for comparative genome mapping in Phasianidae, cross-species amplification of all the markers was tested with chicken and guinea fowl DNA. Amplification products similar in size to the orthologous loci in quail were observed in 42 loci in chicken and 20 loci in guinea fowl. Of the cross-reactive markers, 57.1% in chicken and 55.0% in guinea fowl were polymorphic when tested in 20 birds from their respective populations. Five of 15 markers that could cross-amplify Japanese quail, chicken, and guinea fowl DNA were polymorphic in all three species. Amplification of orthologous loci was confirmed by sequencing 10 loci each from chicken and guinea fowl and comparing with them the corresponding quail sequence. The microsatellite markers reported would serve as a useful resource base for genetic mapping in quail and comparative mapping in Phasianidae.  相似文献   

17.
The mitochondrial genome (mtGenome) has been little studied in the turkey ( Meleagris gallopavo ), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16 717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus , and quail, Corturnix japonica . Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey.  相似文献   

18.
S*S (Silver), S*N (wild type/gold), and S*AL (sex-linked imperfect albinism) form a series of alleles at the S (Silver) locus on chicken (Gallus gallus) chromosome Z. Similarly, sex-linked imperfect albinism (AL*A) is the bottom recessive allele at the orthologous AL locus in Japanese quail (Coturnix japonica). The solute carrier family 45, member 2, protein (SLC45A2), previously denoted membrane-associated transporter protein (MATP), has an important role in vesicle sorting in the melanocytes. Here we report five SLC45A2 mutations. The 106delT mutation in the chicken S*AL allele results in a frameshift and a premature stop codon and the corresponding mRNA appears to be degraded by nonsense-mediated mRNA decay. A splice-site mutation in the Japanese quail AL*A allele causes in-frame skipping of exon 4. Two independent missense mutations (Tyr277Cys and Leu347Met) were associated with the Silver allele in chicken. The functional significance of the former mutation, associated only with Silver in White Leghorn, is unclear. Ala72Asp was associated with the cinnamon allele (AL*C) in the Japanese quail. The most interesting feature concerning the SLC45A2 variants documented in this study is the specific inhibition of expression of red pheomelanin in Silver chickens. This phenotypic effect cannot be explained on the basis of the current, incomplete, understanding of SLC45A2 function. It is an enigma why recessive null mutations at this locus cause an almost complete absence of both eumelanin and pheomelanin whereas some missense mutations are dominant and cause a specific inhibition of pheomelanin production.  相似文献   

19.
The phylogenetic relationships of species in the Phasianidae, Order Galliformes, are the object of intensive study. However, convergent morphological evolution and rapid species radiation result in much ambiguity in the group. Further, matrilineal (mtDNA) genealogies conflict with trees based on nuclear DNA retrotransposable elements. Herein, we analyze 39 nearly complete mitochondrial genomes (three new) and up to seven nuclear DNA segments. We combine these multiple unlinked, more informative genetic markers to infer historical relationships of the major groups of phasianids. The nuclear DNA tree is largely congruent with the tree derived from mt genomes. However, branching orders of mt/nuclear trees largely conflict with those based on retrotransposons. For example, Gallus/Bambusicola/Francolinus forms the sister-group of Coturnix/Alectoris in the nuclear/mtDNA trees, yet the tree based on retrotransposable elements roots the former at the base of the tree and not with the latter. Further, while peafowls cluster with Gallus/Coturnix in the mt tree, they root at the base of the phasianids following Gallus in the tree based on retrotransposable elements. The conflicting branch orders in nuclear/mtDNA and retrotransposons-based trees in our study reveal the complex topology of the Phasianidae.  相似文献   

20.
Cutaneous water evaporation--I. Its significance in heat-stressed birds   总被引:1,自引:0,他引:1  
In a comparative study on avian cutaneous evaporation, two species of Phasianidae, Japanese quail Coturnix coturnix japonica and chukar partridge Alectoris chukar, and three species of Columbidae, palm dove Streptopelia senegalensis, collared turtle dove Streptopelia decaocto and rock pigeon Columbia livia, were investigated. The skin resistance to vapor diffusion (rs) and cutaneous water loss (CWL) were studied in these birds exposed to air temperatures (Ta) between 20 and 52 degrees C. The skin resistance was measured with Lambda instrument diffusive resistance meter. Skin resistance within the thermo-neutral zone varied between a minimum of 62 sec/cm in the palm dove exposed to 20 degrees C and a maximum of 309.1 sec/cm in the partridge exposed to 36 degrees C. The CWL values were 2.5 mg H2O/cm2.hr and 0.51 mg H2O/cm2.hr respectively. Maximum CWL of the quail and partridge was 1.9-2.1 mg H2O/cm2.hr, equivalent to a cooling capacity of about 17% of metabolic heat production at 45 degrees C Ta. In the palm dove, collared dove and pigeon CWL reached 6.8, 13.1 and 20.9 mg H2O/cm2.hr and rs values reached 31.2, 16.2 and 9.4 sec/cm respectively. The cooling capacity amounted to 51.5, 86.1 and 96.5% of metabolic heat during heat stress (52 degrees C). The significance of skin evaporation in body temperature regulation of heat-stressed birds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号