首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three adult patients with acid beta-galactosidase deficiency/GM1 gangliosidosis who were from two unrelated families of Scandinavian descent were found to share a common point mutation in the coding region of the corresponding gene. The patients share common clinical features, including early dysarthria, mild ataxia, and bone abnormalities. When cDNA from the two patients in family 1 was PCR amplified and sequenced, most (39/41) of the clones showed a C-to-T transition (C-->T) at nucleotide 245 (counting from the initiation codon). This mutation changes the codon for Thr(ACG) to Met(ATG). Mutant and normal sequences were also found in that position in genomic DNA, indicating the presence of another mutant allele. Genomic DNA from the patient in family 2 revealed the same point mutation in one allele. It was determined that in each family only the father carried the C-->T mutation. Expression studies showed that this mutation produced 3%-4% of beta-galactosidase activity, confirming its deleterious effects. The cDNA clones from the patients in family 1 that did not contain the C-->T revealed a 20-bp insertion of intronic sequence between nucleotides 75 and 76, the location of the first intron. Further analysis showed the insertion of a T near the 5' splice donor site which led to the use of a cryptic splice site. It appears that the C-->T mutation results in enough functional enzyme to produce a mild adult form of the disease, even in the presence of a second mutation that likely produces nonfunctional enzyme.  相似文献   

2.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

3.
4.
Mucopolysaccharidosis type I (MPS-I) is an autosomal recessive genetic disease caused by a deficiency of the lysosomal glycosidase alpha-L-iduronidase. Hurler (severe), Scheie (mild), and Hurler/Scheie (intermediate) syndromes are clinical subtypes of MPS-I, but it is difficult to distinguish between these subtypes by biochemical measurements. Mutation analysis was undertaken to provide a molecular explanation for the clinical variation seen in MPS-I. Using chemical cleavage and direct PCR sequencing, we have defined four previously undescribed mutations for MPS-I (delG1702, 1060 + 2t-->c, R89Q, and 678-7g-->a). R89Q and 678-7g-->a were found to be present in 40% of Scheie syndrome alleles. Expression of R89Q demonstrated reduced stability and activity of the mutant protein. The deleterious effect of R89Q may be potentiated by a polymorphism (A361T) to produce an intermediate phenotype. 678-7g-->a was found to be a mild mutation, since it was present in an index Scheie syndrome patient in combination with a severe allele (W402X). This mutation appears to allow a very small amount of normal mRNA to be produced from the allele which is likely to be responsible for the mild clinical phenotype observed. Both the 5' and 3' splice site mutations (1060 + 2t-->c and 678-7g-->a, respectively) result in high proportions of mature mRNAs containing introns, which has not been observed for other splicing mutations. The frameshift mutation (delG1702) and the 5' splice site mutation (1060 + 2t-->c) are both thought to be associated with severe MPS-I. The identification of these MPS-I mutations begins to document the expected genetic heterogeneity in MPS-I and provides the first molecular explanations for the broad range of clinical phenotypes observed.  相似文献   

5.
Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.  相似文献   

6.
It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site.  相似文献   

7.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

8.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

9.
mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6kbA-->G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA-->G-mRNA was 5-10-fold less abundant than delta F508 mRNA. Mutation 1811+1.6kbA-->G was found in 21 Spanish and 1 German CF chromosomes, making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype delta F508/1811+1.6kbA-->G have only 1%-3% of normal CFTR mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients.  相似文献   

10.
11.
Crigler-Najjar syndrome type 1 (CN-1) is a recessively inherited, potentially lethal disorder characterized by severe unconjugated hyperbilirubinemia resulting from deficiency of the hepatic enzyme bilirubin-UDP-glucuronosyltransferase. In all CN-1 patients studied, structural mutations in one of the five exons of the gene (UGT1A1) encoding the uridinediphosphoglucuronate glucuronosyltransferase (UGT) isoform bilirubin-UGT1 were implicated in the absence or inactivation of the enzyme. We report two patients in whom CN-1 is caused, instead, by mutations in the noncoding intronic region of the UGT1A1 gene. One patient (A) was homozygous for a G-->C mutation at the splice-donor site in the intron, between exon 1 and exon 2. The other patient (B) was heterozygous for an A-->G shift at the splice-acceptor site in intron 3, and in the second allele a premature translation-termination codon in exon 1 was identified. Bilirubin-UGT1 mRNA is difficult to obtain, since it is expressed in the liver only. To determine the effects of these splice-junction mutations, we amplified genomic DNA of the relevant splice junctions. The amplicons were expressed in COS-7 cells, and the expressed mRNAs were analyzed. In both cases, splice-site mutations led to the use of cryptic splice sites, with consequent deletions in the processed mRNA. This is the first report of intronic mutations causing CN-1 and of the determination of the consequences of these mutations on mRNA structure, by ex vivo expression.  相似文献   

12.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

13.
Recently, we showed that homozygosity for the common 677(C-->T) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(A-->C) mutation, which changes a glutamate into an alanine residue. This mutation destroys an MboII recognition site and has an allele frequency of .33. This 1298(A-->C) mutation results in decreased MTHFR activity (one-way analysis of variance [ANOVA] P < .0001), which is more pronounced in the homozygous than heterozygous state. Neither the homozygous nor the heterozygous state is associated with higher plasma homocysteine (Hcy) or a lower plasma folate concentration-phenomena that are evident with homozygosity for the 677(C-->T) mutation. However, there appears to be an interaction between these two common mutations. When compared with heterozygosity for either the 677(C-->T) or 1298(A-->C) mutations, the combined heterozygosity for the 1298(A-->C) and 677(C-->T) mutations was associated with reduced MTHFR specific activity (ANOVA P < .0001), higher Hcy, and decreased plasma folate levels (ANOVA P <.03). Thus, combined heterozygosity for both MTHFR mutations results in similar features as observed in homozygotes for the 677(C-->T) mutation. This combined heterozygosity was observed in 28% (n =86) of the NTD patients compared with 20% (n =403) among controls, resulting in an odds ratio of 2.04 (95% confidence interval: .9-4.7). These data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity for the 677(C-->T) mutation, and can be an additional genetic risk factor for NTDs.  相似文献   

14.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

15.
Adenosine deaminase (ADA) deficiency usually causes severe combined immune deficiency in infancy. Milder phenotypes, with delayed or late onset and gradual decline in immune function, also occur and are associated with less severely impaired deoxyadenosine (dAdo) catabolism. We have characterized the mutations responsible for ADA deficiency in siblings with striking disparity in clinical phenotype. Erythrocyte dAdo nucleotide pool size, which reflects total residual ADA activity, was lower in the older, more mildly affected sib (RG) than in her younger, more severely affected sister (EG). Cultured T cells, fibroblasts, and B lymphoblasts of RG had detectable residual ADA activity, while cells of EG did not. ADA mRNA was undetectable by northern analysis in these cells of both patients. Both sibs were found to be compound heterozygotes for the following novel splicing defects: (1) a G+1-->A substitution at the 5' splice site of IVS 2 and (2) a complex 17-bp rearrangement of the 3' splice site of IVS 8, which inserted a run of seven purines into the polypyrimidine tract and altered the reading frame of exon 9. PCR-amplified ADA cDNA clones with premature translation stop codons arising from aberrant pre-mRNA splicing were identified, which were consistent with these mutations. However, some cDNA clones from T cells of both patients and from fibroblasts and Epstein-Barr virus (EBV)-transformed B cells of RG, were normally spliced at both the exon 2/3 and exon 8/9 junctions. A normal coding sequence was documented for clones from both sibs. The normal cDNA clones did not appear to arise from either contamination or PCR artifact, and mosaicism seems unlikely to have been involved. These findings suggest (1) that a low level of normal pre-mRNA splicing may occur despite mutation of the invariant first nucleotide of the 5' splice donor sequence and (2) that differences in efficiency of such splicing may account for the difference in residual ADA activity, immune dysfunction, and clinical severity in these siblings.  相似文献   

16.
Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive inherited disorder and may cause sudden unexpected infant death. We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA. In the present study, we confirmed the presence of the same genetic mutation in this patient by amplifying genomic DNA. Molecular analysis was also performed to diagnose another 12 Japanese patients with FBPase deficiency. Four mutations responsible for FBPase deficiency were identified in 10 patients from 8 unrelated families among a total of 13 patients from 11 unrelated families; no mutation was found in the remaining 3 patients from 3 unrelated families. The identified mutations included the mutation reported earlier, with an insertion of one G residue at base 961 in exon 7 (960/961insG) (10 alleles, including 2 alleles in the Japanese family from our previous report [46% of the 22 mutant alleles]), and three novel mutations--a G-->A transition at base 490 in exon 4 (G164S) (3 alleles [14%]), a C-->A transversion at base 530 in exon 4 (A177D) (1 allele [4%]), and a G-->T transversion at base 88 in exon 1 (E30X) (2 alleles [9%]). FBPase proteins with G164S or A177D mutations were enzymatically inactive when purified from E. coli. Another new mutation, a T-->C transition at base 974 in exon 7 (V325A), was found in the same allele with the G164S mutation in one family (one allele) but was not responsible for FBPase deficiency. Our results indicate that the insertion of one G residue at base 961 was associated with a preferential disease-causing alternation in 13 Japanese patients. Our results also indicate accurate carrier detection in eight families (73%) of 11 Japanese patients with FBPase deficiency, in whom mutations in both alleles were identified.  相似文献   

17.
Glyoxal is a major product of DNA oxidation in which Fenton-type oxygen free radical-forming systems are involved. To determine the mutation spectrum of glyoxal in mammalian cells and to compare the spectrum with those observed in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA gene (supF) in the shuttle vector plasmid pMY189. We treated pMY189 with glyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and mutation frequency increased according to the dose of glyoxal. The majority of glyoxal-induced mutations (48%) were single-base substitutions. Eighty three percent of the single-base substitutions occurred at G:C base pairs. Among them, G:C-->T:A transversions were predominant, followed by G:C-->C:G transversions and G:C-->A:T transitions. A:T-->T:A transversions were also observed. Mutational hotspots within the supF gene were detected. These results suggest that glyoxal may play an important role in mutagenesis induced by oxygen free radicals.  相似文献   

18.
U6 RNA genes from the trypanosomatids Crithidia fasciculata and Leptomonas seymouri have been isolated and sequenced. As in Trypanosoma brucei, the U6 RNA genes in both C. fasciculata and L. seymouri are arranged in close linkage with upstream tRNA genes. The U6 RNA sequences from C. fasciculata and L. seymouri deviate in five and three positions, respectively, from the published T. brucei sequence. Interestingly, both C. fasciculata U6 RNA genes carry a C-->T change at the second position of the ACAGAG hexanucleotide sequence, which is important for splicing function and has been considered phylogenetically invariable. A compensatory base change of the C. fasciculata spliced leader RNA at the highly conserved 5' splice site position +5, G-->A, suggests that an interaction between the 5' splice site region and U6 RNA recently proposed for the yeast cis-splicing system may also occur in trans splicing.  相似文献   

19.
The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH) gene was investigated in 59 children with phenylketonuria (PKU) and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%), followed by Ivs7 + 2 T > A (5.1%) and T278I (2.5%). G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.  相似文献   

20.
Mutation analysis of the Fanconi anemia gene FACC.   总被引:9,自引:2,他引:7       下载免费PDF全文
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. We have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. We identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A-->T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in our study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A-->T have Jewish ancestry and have a severe phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号