首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate internal exons are usually between 50 and 400 nt long; exons outside this size range may require additional exonic and/or intronic sequences to be spliced into the mature mRNA. The mouse polymeric immunoglobulin receptor gene has a 654 nt exon that is efficiently spliced into the mRNA. We have examined this exon to identify features that contribute to its efficient splicing despite its large size; a large constitutive exon has not been studied previously. We found that a strong 5′ splice site is necessary for this exon to be spliced intact, but the splice sites alone were not sufficient to efficiently splice a large exon. At least two exonic sequences and one evolutionarily conserved intronic sequence also contribute to recognition of this exon. However, these elements have redundant activities as they could only be detected in conjunction with other mutations that reduced splicing efficiency. Several mutations activated cryptic 5′ splice sites that created smaller exons. Thus, the balance between use of these potential sites and the authentic 5′ splice site must be modulated by sequences that repress or enhance use of these sites, respectively. Also, sequences that enhance cryptic splice site use must be absent from this large exon.  相似文献   

2.
3.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

4.
5.
Virtually all mutations causing Hunter syndrome (mucopolysaccharidosis type II) are expected to be new mutations. Therefore, as a means of molecular diagnosis, we developed a rapid method to sequence the entire iduronate-2-sulfatase (IDS) coding region. PCR amplicons representing the IDS cDNA were sequenced with an automatic instrument, and output was analyzed by computer-assisted interpretation of tracings, using Staden programs on a Sun computer. Mutations were found in 10 of 11 patients studied. Unique missense mutations were identified in five patients: H229Y (685C-->T, severe phenotype); P358R (1073C-->G, severe); R468W (1402C-->T, mild); P469H (1406C-->A, mild); and Y523C (1568A-->G, mild). Non-sense mutations were identified in two patients: R172X (514C-->T, severe) and Q389X (1165C-->T, severe). Two other patients with severe disease had insertions of 1 and 14 bp, in exons 3 and 6, respectively. In another patient with severe disease, the predominant (> 95%) IDS message resulted from aberrant splicing, which skipped exon 3. In this last case, consensus sequences for splice sites in exon 3 were intact, but a 395 C-->G mutation was identified 24 bp upstream from the 3' splice site of exon 3. This mutation created a cryptic 5' splice site with a better consensus sequence for 5' splice sites than the natural 5' splice site of intron 3. A minor population of the IDS message was processed by using this cryptic splice site; however, no correctly spliced message was detected in leukocytes from this patient. The mutational topology of the IDS gene is presented.  相似文献   

6.
7.
8.
Two novel mutations in the glucokinase gene (GCK) have been identified in patients with maturity-onset diabetes of the young type-2 (MODY2), i.e., a C-for-G substitution at position ?1 of the acceptor splice site of intron 7 (c. 864-1G>C) and a synonymous c.666C>G substitution (GTC>GTG, p.V222V) at exon 6. An analysis of the splicing products obtained upon the transfection of human embryonic HEK293 cells with GCK minigene constructs carrying these mutations showed that both substitutions impaired normal splicing. As a result of c.864-1G>C, the usage of the normal acceptor site was blocked, which activated cryptic acceptor splice sites within intron 7 and generated several aberrant RNAs containing fragments of intron 7. The synonymous substitution c.666C>G created a novel donor splice site in exon 6, which results in the formation of an abnormal GCK mRNA with a 16-nucleotide deletion in exon 6. In vitro experiments on minigene splicing confirmed the inactivating effect of these mutations on glucokinase gene expression.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3’ splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.  相似文献   

16.
A single cardiac troponin T (cTNT) gene generates two mRNAs by including or excluding the 30-nucleotide exon 5 during pre-mRNA processing. Transfection analysis of cTNT minigenes has previously demonstrated that both mRNAs are expressed from unmodified minigenes, and mutations within exon 5 can lead to complete skipping of the exon. These results suggested a role for exon sequence in splice site recognition. To investigate this potential role, an in vitro splicing system using cTNT precursors has been established. Two-exon precursors containing the alternative exon and either the upstream exon or downstream exon were spliced accurately and efficiently in vitro. The mutations within the alternative exon that resulted in exon skipping in vivo specifically blocked splicing of the upstream intron in vitro and had no effect on removal of the downstream intron. In addition, the splicing intermediates of these two precursors have been characterized, and the branch sites utilized on the introns flanking the alternative exon have been determined. Potential roles of exon sequence in splice site selection are discussed. These results establish a system that will be useful for the biochemical characterization of the role of exon sequence in splice site selection.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号