首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中等多棘神经元(medium spiny neurons,MSNs)是纹状体的主要投射神经元,其细胞膜上表达的不同类型多巴胺(dopamine,DA)受体,分别参与基底神经节直接与间接两条运动神经通路功能的调节。近年来发现,纹状体相邻MSNs之间还存在突触连接,这种突触结构对直接或间接通路的电活动产生侧抑制效应(lateral inhibition),并通过其前馈作用进一步调节基底神经节信息输出核团的兴奋性。因此,纹状体MSNs的侧抑制效应对运动的精确调节具有重要意义。本文拟从纹状体神经元构筑与侧抑制突触效应、纹状体MSNs侧抑制突触效应参与基底神经节调控的生理学机制、MSNs侧抑制效应异常与帕金森病(Parkinson's disease,PD)等方面对纹状体MSNs侧抑制效应与基底神经节功能调控的机制进行综述。  相似文献   

2.
运动功能是在神经系统直接或间接调控下协调完成的,基底神经节对于运动功能的执行起至关重要作用,其中纹状体在基底神经节处于中心地位,接受多巴胺能神经元的投射,通过直接、间接通路参与运动的调控。多巴胺能神经元中多巴胺的释放以活性区介导的快速突触传递的方式进行。活性区由Bassoon、RIM和ELKS三种支架蛋白组成,其中RIM蛋白对多巴胺释放起调节作用。纹状体不同类型的神经元电活动随着多巴胺释放含量的变化出现适应性变化。当纹状体去多巴胺支配时,中等多棘神经元和快放电中间神经元放电频率显著增加;当纹状体多巴胺耗竭时,大胆碱能中间神经元出现pause-rebound编码模式。本文对多巴胺运动控制的分子机制展开讨论,并对其在运动疲劳中枢机制中的研究进行综述,为纹状体神经元靶向干预提供理论依据和新思路。  相似文献   

3.
运动功能是在神经系统的调控下完成的,皮层及基底神经节在运动功能调节中发挥信息整合及指令发放的作用,其中纹状体是基底神经节中接受传入信息的主要核团。腺苷A2A受体(adenosine A2A receptor, A2AR)在纹状体中高度表达,并在纹状体中整合多巴胺、谷氨酸和大麻素信号,参与间接通路运动抑制的信息编码。该文阐述了腺苷A2AR与多巴胺D2受体、代谢型谷氨酸mGlu5受体以及大麻素CB1受体的交互作用,探讨腺苷表达异常在神经疾病,如帕金森病、酒精成瘾等产生的作用,以及靶向干预腺苷改善相关疾病运动功能的机制,并对A2AR在间接通路运动调控及相关运动障碍中的研究进行总结,为后期运动功能中枢靶向干预提供理论参考。  相似文献   

4.
纹状体是运动调控的关键组成部分,对机体运动控制发挥重要作用。腺苷A2A受体(adenosine A2A receptor, A2AR)与多巴胺D2受体(dopamine D2 receptor, D2DR)在纹状体投射到苍白球的神经元中高度共表达,形成的A2AR/D2DR异聚体具有拮抗效应,共同调节纹状体接收到的谷氨酸能和多巴胺能投射,通过改变纹状体神经元的活性,控制投射向下级核团的GABA能输出,调节基底神经节直接通路和间接通路的平衡,最终对运动产生影响。A2AR/D2DR在细胞水平以及行为水平上的拮抗效应,为其在运动疲劳和帕金森病的运动功能改善上提供了新的靶点。该文将对A2AR/D2DR拮抗效应在运动功能调节中的研究进行综述,为后期研究运动的中枢干预靶点提供新的可能性。  相似文献   

5.
目标导向和习惯化行为策略转换缺陷是习惯化觅药行为形成的主要原因.以往认为,前额叶皮层对负责目标导向系统的背内侧纹状体控制能力的减弱介导了习惯化行为.然而,最新研究发现,背外侧纹状体(DLS)的直接通路和间接通路可选择性调控目标导向和习惯化系统.并且,运动皮层对DLS的投射可通过双向调节多巴胺D1受体(D1DR)和D2受体(D2DR)神经元突触可塑性,调控直接通路和间接通路间的协同或拮抗作用.近期研究还发现,杏仁核作为调控情绪的关键脑区,可通过中央杏仁核与基底外侧杏仁核间的功能迁移,从而介导习惯化觅药行为中伏隔核与DLS间的功能连接.此外,纹状体内D1DR和D2DR神经元对习惯化觅药行为的调控存在竞争关系.鉴于此,本文将重点讨论伴随习惯化用药形成发生行为策略转换缺陷相关的细胞特异性和环路特异性的脑功能异常机制.  相似文献   

6.
细胞外信号调节激酶1和2(Erk1/2)是一种丝氨酸/苏氨酸蛋白激酶,属于丝裂原活化蛋白激酶(MAPK)家族的关键成员,通过磷酸化细胞质和细胞核内的多种底物参与正常及病理状态下的细胞活动。以纹状体为核心的基底神经节(basal ganglia, BG)被认为是运动控制相关的重要结构。Erk1/2通过对纹状体胞外多巴胺(DA)和谷氨酸(Glu)信号进行整合,协调了细胞增殖、分化及转录和翻译等重要细胞事件。研究显示,纹状体多巴胺受体1型中等多棘神经元(D1-MSNs)和多巴胺受体2型中等多棘神经元(D2-MSNs)上,Erk/MAPK信号通路具有差异性调控运动行为的作用。纹状体D1-MSNs的Erk1/2通过多巴胺D1样受体(D1R)激活cAMP/PKA通路促进运动行为,D2-MSNs的Erk1/2通过多巴胺D2样受体(D2R)和α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)抑制运动行为。此外,Erk/MAPK信号通路还能参与调节帕金森病(PD)、亨廷顿病及成瘾行为相关的病理生理学进程。Erk/MAPK信号通路干预能够有效缓解相关运...  相似文献   

7.
初级运动皮层(primary motor cortex,M1),在精细运动执行中起非常重要的作用,同时在皮质-基底神经节-丘脑-皮质神经通路中也发挥重要的作用.本文结合当前研究进展,围绕M1区神经元构筑、突触投射及多巴胺受体分布及帕金森病(Parkinson's disease,PD)后神经元电生理学变化等方面阐述M1...  相似文献   

8.
用6-羟多巴胺破坏黑质纹状体通路,使大鼠多巴胺耗竭后,应用原位杂交组织化学方法测量D1多巴胺受体对即早基因c-fos和zif268诱导反应,分析强啡肽对突触前、后调节作用。先用D1多巴胺受体激动剂SKF-38393反复处理动物,促进纹状体内强啡肽表达,在伏隔核强啡肽表达增加,同时伴随着即早基因c-fos和zif268的减少.在纹状体的背部和两侧,强啡肽表达虽大量增加,而D1多巴胺受体反应仍然维持原水平.在中央纹状体区,即早基因的表达处于中间水平。结果提示,纹状体内强啡肽起着调节多巴胺输入到纹状体黑质神经元的作用,包括突触前、后位置;并且调节作用在纹状体的腹、背侧区是不同的  相似文献   

9.
皮层-纹状体谷氨酸(glutamate, Glu)能通路的异常兴奋是帕金森病(Parkinson's disease, PD)的关键病理基础。代谢性谷氨酸受体(metabotropic glutamate receptors, mGluRs)可通过调节突触前Glu释放和突触后传递调控皮层-纹状体突触可塑性,是PD临床治疗的重要干预靶点。运动疗法作为PD康复的重要手段,可显著减缓PD运动和认知的退变,其机制可能与重塑皮层-纹状体突触结构与功能有关。该文就mGluRs调控皮层-纹状体通路Glu传导与运动防治PD的神经生物学机制等方面进行综述。  相似文献   

10.
音猬因子(sonic hedgehog,SHH)是一种分泌蛋白质,可在发育过程中控制神经祖细胞、神经元和神经胶质细胞的形成。研究发现,海马是学习和记忆中至关重要的大脑区域,SHH在海马神经元回路的形成和可塑性中发挥重要作用,可介导海马神经的发生和突触的可塑性调节。海马神经元树突中SHH受体的激活是跨神经元信号通路的组成部分,该信号通路可加速轴突的生长并增强谷氨酸从突触前末端的释放。SHH信号通路转导受损可导致中枢神经系统损伤和相关疾病(如自闭症、抑郁症和神经退行性疾病等)发生。因此,控制SHH信号通路转导,如使用SHH通路抑制剂或激动剂可能有助于相关疾病的治疗。综述了SHH信号通路的海马神经可塑性及其在中枢神经系统发育和相关疾病中的影响,以期为阐明SHH信号转导受损导致的海马神经受损和中枢神经系统相关疾病的机制奠定一定的理论依据。  相似文献   

11.
基底神经节中多巴胺和腺苷受体二聚化及其药理学意义   总被引:1,自引:0,他引:1  
孙万春  朱兴族 《生命科学》2004,16(4):193-199
近年来,大量研究发现G蛋白偶联受体不仅以单体形式,而且以同源或异源二聚体形式存在。腺苷A1受体和多巴胺D1受体以及腺苷A2a受体和多巴胺D2受体分别共存于基底神经节中纹状体向黑质和脚内核投射的神经元以及纹状体向苍白球投射的神经元内。A1/D1、A2a/D2受体形成受体异聚复合体构成了受体一受体之间相互作用的分子基础。腺苷和多巴胺受体之间在细胞水平以及行为水平上拮抗性的相互作用为其在帕金森病、精神分裂症、舞蹈病和药物依赖等疾病的治疗上提供了新的靶向。  相似文献   

12.
损毁丘脑腹内侧核对大鼠行为的影响   总被引:2,自引:1,他引:1  
黑质(SN)-纹状体多巴胺(DA)能神经元系统在调节躯体运动方面起着重要作用;但这一作用的传出神经通路尚无定论。在大鼠,丘脑腹内侧核(VM)是基底神经节的传出投射之一,主要接受SN网状部(SNR的投射纤维。本实验观察电损毁VM后,腹腔注射去水吗啡对大鼠姿势与行为的影响,以探讨SN-纹状体DA能神经元系统与VM在调节躯体运动中的功能联系。1 材料与方法 实验采用Sprague-Dawley系雄性大鼠,体重为200~300g,分为对照组(n=10)和实验组(n=11)。在1%成巴比妥钠麻醉下,将动物固定于立  相似文献   

13.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

14.
突触可塑性可以导致神经元传递效率的改变,是神经系统发育、学习记忆等脑的高级功能活动中细胞功能的重要基础。蛋白质磷酸化修饰通过蛋白激酶和蛋白磷酸酶之间的动态平衡对突触可塑性和突触传递的长期调节,参与各种脑疾病(包括精神疾病和神经退行性疾病)的发生发展。本文综述了磷酸化修饰和突触可塑性的关系,重点介绍了长时程增强和长时程抑制相关的离子型谷氨酸受体磷酸化修饰研究进展,以期为神经元突触可塑性改变相关的脑疾病研究提供新的思路。  相似文献   

15.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

16.
苍白球是基底神经节间接环路的重要核团,在机体正常及病理状态下调节运动功能。前期研究工作显示苍白球接受来自黑质纹状体轴突侧支的多巴胺能纤维支配。苍白球表达多巴胺D1和D_2样受体。本研究旨在采用多管微电极细胞外电生理记录技术,探讨多巴胺D_2样受体对正常及帕金森病模型大鼠苍白球神经元自发放电的直接调控效应。结果显示,在正常大鼠上,微压力给予多巴胺D_2样受体激动剂quinpirole对苍白球神经元自发放电发挥不同的电生理效应。在所记录的61个苍白球神经元,quinpirole可使24个神经元的放电频率增加(62.7±11.2)%,而使另外16个神经元放电频率降低(37.5±2.9)%,联合给予D_2样受体阻断剂sulpride可阻断quinpirole对苍白球神经元自发放电的调控效应。在6-羟基多巴胺(6-hydroxydopamine,6-OHDA)帕金森病模型大鼠损毁侧所记录的47个苍白球神经元中,quinpirole可使其中25个神经元的放电频率增加(64.2±10.1)%,而使另外11个神经元放电频率降低(51.9±6.2)%。以上结果提示,多巴胺D_2样受体双向调节苍白球神经元的自发放电活动;在帕金森病状态下,多巴胺D_2样受体仍具有双向调节苍白球神经元兴奋性的效应。  相似文献   

17.
Lu T  Yang XL 《生理科学进展》1997,28(3):197-202
AMPA受体是离子型谷氨酸受体中重要的一类亚型,在中枢神经系统内主要介导快速的兴奋性突触传递。近年来,AMPA受体独特的失敏特性逐渐被阐明,已经确定了一些特异调节AMPA受体失敏的化合物。大量的生理学和药理学证据表明,AMPA受体失敏在快速兴奋性突触传递中起着重要的作用,对单个突触的传递效率、神经元的整合功能和突触的可塑性均有影响。  相似文献   

18.
帕金森病(Parkinson's disease,PD)是一种老年神经系统退变性疾病,主要病理改变是中脑黑质致密部多巴胺能神经元渐进性变性死亡,从而引起基底神经节的功能失调。近年的研究显示,多巴胺能神经元的丢失并不是帕金森病发病的唯一因素,基底神经节中其它神经递质,包括谷氨酸、γ-氨基丁酸、乙酰胆碱等,在帕金森病的发病中也有重要的作用。在疾病发生发展过程中,神经递质的合成、分泌发生紊乱,基底神经节网络调控功能失调,导致了以运动系统症状为主的临床表现。本文就帕金森病状态下基底神经节中主要神经递质失衡的研究进展作一综述。  相似文献   

19.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

20.
α7 nAChR是配体门控离子通道蛋白超家族的典型代表,烟碱型乙酰胆碱受体的一个重要亚型,是复杂的五聚体跨膜蛋白,介导Na+、Ca2+流入,K+流出,尤以对Ca2+通透性高。α7 nAChR分布广泛且功能多样,不仅分布于中枢和外周神经系统,介导神经元的快速突触传递,其在许多非神经元细胞和组织中亦有表达,包括内皮细胞,支气管上皮细胞,皮肤角蛋白细胞,膀胱上皮细胞,血管平滑肌等,并参与其功能调节及功能障碍相关疾病的病理生理过程,如可调节细胞质运动和细胞间黏附,细胞增殖,血管生成以及肿瘤的侵袭和迁移。本文主要介绍烟碱型乙酰胆碱受体α7亚型在不同胚层来源的上皮组织细胞中的表达及其功能特征,以期通过激活或抑制α7 nAChR的表达来降低与其密切相关疾病的发生率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号