首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis.  相似文献   

2.
Three genes from Ralstonia eutropha necessary for poly(3-hydroxybutyrate) (PHB) synthesis were introduced into the hairy roots of sugar beet. Transformation of a vector construct harbouring the PHB genes, each fused to the coding region of the pea ribulose-bisphosphate carboxylase plastid targeting sequence, resulted in 20 transgenic hairy-root clones, producing up to 55 mg high molecular PHB/g dry weight, as identified by gas chromatography, gel permeation chromatography and HPLC. Accumulation of PHB polymer in sugar beet root leucoplasts was confirmed by transmission electron microscopy. Thus, for the first time, plastidic PHB production was demonstrated for roots of a carbohydrate-storing crop plant.  相似文献   

3.
Poly(3-hydroxybutyrate) (PHB) is synthesized from 3-hydroxybutyryl-CoA by polyhydroxyalkanoate synthase and hydrolyzed by PHB depolymerase. In this study, we focused on the reverse reaction of polyhydroxyalkanoate synthase, and propose the possibility that PHB can be degraded through a novel process, that is thiolysis of PHB with CoASH. Polyhydroxyalkanoate synthase of Ralstonia eutropha was incubated with 14C-labeled PHB and CoASH. The reaction mixture was fractionated by HPLC and then analyzed with a scintillation counter. The analysis revealed 3-hydroxybutyryl-CoA to be a product of the reaction. When NADP+ and acetoacetyl-CoA reductase were added to the reaction mixture, an increase in absorbance at 340 nm was observed. Native PHB inclusion bodies from R. eutropha also showed thiolytic activity. This is the first indication that polyhydroxyalkanoate synthase catalyzes both the synthesis and degradation of PHB, and that native PHB inclusion bodies has thiolytic activity.  相似文献   

4.
Enrichments from an estuarine sediment with crotonate as substrate resulted in the isolation of a motile, gram-negative, obligately anaerobic rod with pointed ends, designated strain 10cr1. The organism was asporogenous, did not reduce sulfur, sulfate, thiosulfate, nitrate, oxygen or fumarate, and had a mol %G+C ratio of 29. Strain 10cr1 was able to ferment crotonate, 3-hydroxybutyrate, lactate, pyruvate, and poly--hydroxybutyric acid (PHB). Acetate, propionate, butyrate, CO2 and H2 were the fermentation products. When grown on PHB there was accumulation of 3-hydroxybutyrate once growth had ceased, indicating degradation of PHB to the monomer. The 3-hydroxybutyrate formed during growth of the culture was fermented to acetate, butyrate and H2. Experimental evidence suggested the production of an extracellular PHB depolymerase. The cells were not attached to the PHB granules. This is the first isolation of an anaerobic bacterium capable of degrading exogenous PHB. This strain is described as a new species, Ilyobacter delafieldii sp. nov., and strain 10cr1 (=DSM 5704) is designated as the type (and at present, only) strain.Abbreviations G+C guanine plus cytosine - OD optical density - PHB poly--hydroxybutyric acid - specific growth rate - HPLC high-performance liquid chromatography - YE yeast extract  相似文献   

5.
6.
Rapid screening procedures for identification of succinic acid producers   总被引:7,自引:0,他引:7  
Succinic acid, an intermediate of tricarboxylic acid cycle, is produced and accumulated by anaerobic microorganisms. The long-standing interest in the production of this organic acid is because it is a key compound in producing more than 30 commercially important products. The detection of succinic acid is generally carried out by gas chromatography (GC), enzymatic assays, ion-exclusion chromatography (IEC) or by high performance liquid chromatography (HPLC). However, these methods are time consuming, require sophisticated instrumentation and are expensive. In the present investigation we are reporting two rapid, cost effective screening methods for the detection of this important organic acid. These methods can be utilized to screen a large number of microbes producing succinic acid in a very short span of time.  相似文献   

7.
Organisms isolated from activated sludge and identified as Zoogloea ramigera accumulated large amounts of sudanophilic granules as the cultures flocculated. The granules were extracted by chloroform and precipitated with ether from acid-hydrolyzed cells. Identification of the sudanophilic granules as poly-β-hydroxybutyric acid (PHB) was confirmed by physical, chemical, and infrared spectral analyses. The isolated polymer accounted for 12.0 to 50.5% of the dry weight of the cells. The polymer was not synthesized when the culture was grown in a growth-limiting concentration of organic substrate; it did accumulate when the culture was grown in medium enriched with carbon and energy sources. An increase in concentration of intracellular PHB was directly proportional to optical density and uptake of glucose. Aside from intracellular storage of PHB as endogenous metabolite, the accumulation of PHB is noted as a possible mechanism of flocculation.  相似文献   

8.
Free-living nitrogen-fixing bacteria have been identified as a potential source of poly-3-hydroxybutyric acid (PHB). Systematic study of this ability of N2-fixing organisms has lead to the isolation of an efficient strain, identified asAzotobacter chroococcum. Nutritional requirements and cultural conditions for optimal production of PHB by this strain under laboratory conditions were determined. In N-free liquid medium containing 2% glucose, the strain accumulated PHB up to 68% of its cell dry mass. Glucose and mannitol were found to be the best carbon sources, while organic nitrogen compounds were preferred as nitrogen source. Maximum yield (3.3 g/L) was obtained with 0.2% bactopeptone supplementation. Inorganic phosphate at a concentration suboptimal for growth had some growth-promoting effect. Under oxygen limiting conditions, biomass production was enhanced but a different response was obtained for PHB production.  相似文献   

9.
Phasins play an important role in the formation of poly(3-hydroxybutyrate) [PHB] granules and affect their size and number in the cells. Recent studies on the PHB granule proteome and analysis of the complete genomic DNA sequence of Ralstonia eutropha H16 have identified three homologues of the phasin protein PhaP1. In this study, mutants of R. eutropha deficient in the expression of the phasin genes phaP1, phaP2, phaP3, phaP4, phaP12, phaP123, and phaP1234 were examined by gas chromatography. In addition, the nanostructures of the PHB granules of the wild-type and of the mutants were imaged by atomic force microscopy (AFM), and the molecular masses of the accumulated PHB were analyzed by gel permeation chromatography. For this, cells were cultivated under conditions permissive for accumulation of PHB and were then cultivated under conditions permissive for degradation of PHB. Mutants deficient in the expression of phaP2, phaP3, or phaP4 genes mobilized the stored PHB only slowly like the wild-type, whereas degradation occurred much earlier and faster in the phaP1 single mutant as well as in all multiple mutants defective in the phaP1 gene plus one or more other phasin genes. This indicated that the presence of the major phasin PhaP1 on the granule surface is important for PHB degradation and that this phasin is therefore of particular relevance for PHB accumulation. It was also shown that the molecular weights of the accumulated PHB were identical in all examined strains; phasins have therefore no influence on the molecular weight of PHB. The AFM images obtained in this study showed that the PHB granules of R. eutropha H16 form a single interconnected system inside the wild-type cells.  相似文献   

10.
Li X  Loh XJ  Wang K  He C  Li J 《Biomacromolecules》2005,6(5):2740-2747
Poly(ester urethane)s with poly[(R)-3-hydroxybutyrate] (PHB) as the hard and hydrophobic segment and poly(ethylene glycol) (PEG) as the soft and hydrophilic segment were synthesized from telechelic hydroxylated PHB (PHB-diol) and PEG using 1,6-hexamethylene diisocyanate as a nontoxic coupling reagent. Their chemical structures and molecular characteristics were studied by gel permeation chromatography, 1H NMR, and Fourier transform infrared spectroscopy. Results of differential scanning calorimetry and X-ray diffraction indicated that the PHB segment and PEG segment in the poly(ester urethane)s formed separate crystalline phases with lower crystallinity and a lower melting point than those of their corresponding precursors, except no PHB crystalline phase was observed in those with a relatively low PHB fraction. Thermogravimetric analysis showed that the poly(ester urethane)s had better thermal stability than their precursors. The segment compositions were calculated from the two-step thermal decomposition profiles, which were in good agreement with those obtained from 1H NMR. Water contact angle measurement and water swelling analysis revealed that both surface hydrophilicity and bulk hydrophilicity of the poly(ester urethane)s were enhanced by incorporating the PEG segment into PHB polymer chains. The mechanical properties of the poly(ester urethane)s were also assessed by tensile strength measurement. It was found that the poly(ester urethane)s were ductile, while natural source PHB is brittle. Young's modulus and the stress at break increased with increasing PHB segment length or PEG segment length, whereas the strain at break increased with increasing PEG segment length or decreasing PHB segment length.  相似文献   

11.
A three-phase fluidized bed reactor (TPFBR) was designed to evaluate the potential of CoQ(10) production by gel-entrapped Sphingomonas sp. ZUTE03 via a conversion-extract coupled process. In the reactor, the CoQ(10) yield reached 46.99 mg/L after 8 h of conversion; a high-level yield of about 45 mg/L was maintained even after 15 repetitions (8 h/batch). To fully utilize the residual precursor (para-hydroxybenzoic acid, PHB) in the aqueous phase, the organic phase was replaced with new solution containing 70 mg/L solanesol for each 8 h batch. The CoQ(10) yield of each batch was maintained at a level of about 43 mg/L until the PHB ran out. When solid solanesol was fed to the organic phase for every 8 h batch, CoQ(10) could accumulate and reach a yield of 171.52 mg/L. When solid solanesol and PHB were fed to the conversion system after every 8 h batch, the CoQ(10) yield reached 441.65 mg/L in the organic phase after 20 repetitions, suggesting that the conversion-extract coupled process could enhance CoQ(10) production in the TPFBR.  相似文献   

12.
Radioisotopically labeled glucose and pyruvate were employed to elucidate biochemical mechanisms utilized by the filariid Dipetalonema viteae during cultivation. Adults isolated from amicrofilaremic hamsters were incubated at 37 C in a mixture of NCTC135:IMDM (NI), with either D-[14C-(U)]glucose or [1-14C]pyruvate, under a gas phase of 5% CO2/N2 for 3 days. Labeled organic acids were separated and quantified by ion exchange chromatography. High performance liquid chromatography (HPLC) was used for separation and quantification of the 23 free amino acids in the NI medium. Ion exchange chromatography revealed that lactate was the major glycolytic end product, accounting for 90-97% of the original carbon utilized. Small amounts of radioactivity were recovered in succinate and variably in acetate fractions. HPLC analysis demonstrated that some amino acids increased, some decreased, and some remained at the initial concentration. Alanine exhibited the greatest change, consistently increasing from 2 to 4 times the original concentration. Analyses of purified amino acid peaks revealed radioactivity only in the alanine peak, accounting for 2-4% of the original carbon utilized.  相似文献   

13.
Crystallization behavior and environmental biodegradability were investigated for the films of bacterial poly(3-hydroxybutyric acid) (PHB) blends with chitin and chitosan. The blend films showed X-ray diffractive peaks that arose from the PHB crystalline component. It was suggested that the lamellar thickness of the PHB crystalline component in the blends was large enough to show detectable X-ray diffractive peaks, but this was too small to show observable melting endotherm in the DSC thermogram and the crystalline band absorption in the FT-IR spectrum. In the PHB/chitin and PHB/chitosan blends, thermal transition temperatures of PHB amorphous region observed by dynamic mechanical thermal analysis were almost the same as that of neat PHB. Both the PHB/chitin and the PHB/chitosan blend films biodegraded in an environmental medium. Several blend films showed faster biodegradation than the pure-state component polymers.  相似文献   

14.
Summary Penicillium sp. DS9713a-01 was obtained by ultraviolet (u.v.) light mutagenesis from the Penicillium sp. DS9713a which can degrade poly (3-hydroxybutyrate) (PHB). The enzymatic activity of DS9713a-01 was 97% higher than that of the wild-type strain. The DS9713a-01 mutant could completely degrade PHB films in 5 days; however, the wild-type strain achieved only 61% at the same time. The extracellular PHB depolymerase was purified from the culture medium containing PHB as the sole carbon source by filtration, ammonium sulfate precipitation and chromatography on Sepharose CL-6B. The molecular weight of the PHB depolymerase was about 15.1kDa determined by SDS-polyacrylamide gel electrophoresis. The optimum activity of the PHB depolymerase was observed at pH 8.6 and 50 °C. The enzyme was stable at temperatures below 37 °C and in the pH range from 8.0 to 9.2. The activity of PHB depolymerase could be activated or inhibited by some metal ions. The apparent K m value was 0.164 mg ml−1. Mass spectrometric analysis of the water-soluble products after enzymatic degradation revealed that the primary product was the monomer, 3-hydroxybutyric acid.  相似文献   

15.
High-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE) were used in biodegradation kinetic studies. This paper describes a rapid penciclovir separation using CZE with detection limits comparable to HPLC. The ionic-strength mediated stacking technique was employed while good resolution was maintained. With a shorter analysis time, comparable detection limits and no organic solvent consumption, CZE is a better method for penciclovir biodegradation studies than conventional reversed-phase HPLC (RP-HPLC).  相似文献   

16.
17.
Methanotrophs have promising applications in the bioremediation of chlorinated hydrocarbons and in the production of a biopolymer, poly-beta-hydroxybutyrate (PHB). Batch bioreactor culture conditions were studied for the accumulation of PHB by methane-grown Methylosinus trichosporium OB3b, and to evaluate the effect of PHB on the bacterial capacity to degrade trichloroethylene (TCE), a common groundwater contaminant. The PHB content of the washed and lyophilized cells was measured by gas chromatography (GC), after hydrochloric acid (HCl) propanolysis. A differential GC-based assay was developed for the monomer and the polymer of beta-hydroxybutyrate utilizing 1% and 10% HCl (v/v) reaction mixtures, respectively. During bioreactor growth in a Cu-deficient modified Higgins' medium, the cells accumulated PHB upon depletion of nitrate. A biomass yield of 3.2 g dry wt/L and a PHB accumulation of approximately 10% (w/w) were reached after 140 to 160 h, without adversely affecting the propene or TCE epoxidation specific rate given by whole cells containing soluble methane monooxygenase (sMMO). The TCE biotransformation capacity ( approximately 0.25 mg TCE oxidized/mg dry cell wt) of resting cells containing approximately 10% PHB was consistently approximately 1.6-fold greater than that of cells containing only approximately 2% PHB. Higher levels (>10%) of accumulated PHB did not enhance this biotransformation capacity further. By replacing the bioreactor inlet air + CO(2) mixture with pure O(2) at approximately 85 h of batch operation, a PHB accumulation of approximately 45% was achieved after 160 h, but the whole-cell sMMO activity was markedly decreased. In contrast, cells grown in a 10 muM Cu-supplemented Higgins' nitrate minimal salts medium (particulate MMO formation) accumulated up to 50% PHB in only 120 h, coupled with a very high biomass yield of 18 g dry cell wt/L. High PHB accumulations above approximately 20% by both the -Cu and the +Cu grown cells resulted in a decreased ratio of the electronic cell count to the absorbance at 660 nm, which is commonly used to monitor bacterial growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
The simultaneous determination of betaine (trimethyl-glycine), N,N-dimethylglycine (N,N-DMG), acetic, and propionic acid in complex organic matrices for process monitoring is described. In some cases also ammonia and chloride were detected. The determinations were carried out by means of isocratic cation-exchange chromatography. For the detection of betain and N,N-DMG an ultraviolet detector was used. All other substances were detected by conductivity. Linear calibration curves were obtained for betaine (0.01–7.71 g/l), both organic acids (0.06–60 mM), chloride (0.01–4.31 g/l), and ammonia (0.05–1.02 g/l) over the concentration range given in parentheses. The results obtained by HPLC were checked by gas-chromatographic (GC) measurements for the organic acids and by photometric tests for betaine and ammonia. The values for the organic acids obtained by HPLC and GC varied only in the range of the statistical deviation of the two methods. A larger discrepancy was observed for betaine. The values obtained after precipitation of betaine as a reineckate were up to 60% higher than those of the HPLC measurements. The results of the two methods were the same if the samples were filtered through a microporous membrane with a cut-off of 20 kDa. The applicability of the HPLC method for on-line process monitoring was shown in the context of an experiment being run for 40 h.  相似文献   

19.
We studied recovery of poly(3-hydroxybutyric acid) (PHB) from Alcaligenes eutrophus and a recombinant Escherichia coli strain harboring the A. eutrophus poly(3-hydroxyalkanoic acid) biosynthesis genes. The amount of PHB degraded to a lower-molecular-weight compound in A. eutrophus during the recovery process was significant when sodium hypochlorite was used, but the amount degraded in the recombinant E. coli strain was negligible. However, there was no difference between the two microorganisms in the patterns of molecular weight change when PHB was recovered by using dispersions of a sodium hypochlorite solution and chloroform. To understand these findings, we examined purified PHB and lyophilized cells containing PHB by using a differential scanning calorimeter, a thermogravimetric analyzer, and nuclear magnetic resonance. The results of our analysis of lyophilized whole cells containing PHB with the differential scanning calorimeter suggested that the PHB granules in the recombinant E. coli strain were crystalline, while most of the PHB in A. eutrophus was in a mobile amorphous state. The stability of the native PHB in the recombinant E. coli strain during sodium hypochlorite treatment seemed to be due to its crystalline morphology. In addition, as determined by the thermogravimetric analyzer study, lyophilized cell powder of the recombinant E. coli strain containing PHB exhibited greater thermal stability than purified PHB obtained by chloroform extraction. The PHB preparations extracted from the two microorganisms had identical polymer properties.  相似文献   

20.
Pyrene fatty acids are routinely purified by silica based column chromatography and analyzed on thin-layer silica plates (H.-J. Galla et al., Chem. Phys. Lipids, 23 (1979) 239-251). Although pyrene decanoic acid runs as a single spot on thin-layer chromatography (TLC), gas-liquid chromatography (GC) of the methyl ester derivatives of a representative sample revealed four separate peaks with the major component only 92% of the total. High performance reverse phase liquid chromatography (HPLC) was used to purify pyrene decanoic acid and separate the contaminants. After two passes on a C18 reverse phase HPLC column, pyrene decanoic acid is 99.98% pure by GC analysis. Absorption, fluorescence, and NMR spectra were recorded for pyrene decanoic acid and the major impurities. The results indicate that one impurity is a C10 fatty acid with an altered aromatic moiety. Two other impurities are pyrene derivatives but their acyl chains probably are not decanoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号