首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic mechanisms play a major role in heterosis, partly as a result of the remodeling of epigenetic modifications in F1 hybrids. Based on chromatin immunoprecipitation‐sequencing (ChIP‐Seq) analyses, we show that at the allele level extensive histone methylation remodeling occurred for a subset of genomic loci in reciprocal F1 hybrids of Oryza sativa (rice) cultivars Nipponbare and 93‐11, representing the two subspecies japonica and indica. Globally, the allele modification‐altered loci in leaf or root of the reciprocal F1 hybrids involved ?12–43% or more of the genomic regions carrying either of two typical histone methylation markers, H3K4me3 (>21 000 genomic regions) and H3K27me3 (>11 000 genomic regions). Nevertheless, at the total modification level, the majority (from ?43 to >90%) of the modification‐altered alleles lay within the range of parental additivity in the hybrids because of concerted alteration in opposite directions, consistent with an overall attenuation of allelic differences in the modifications. Importantly, of the genomic regions that did show non‐additivity in total modification level by either marker in the two tissues of hybrids, >80% manifested transgressivity, which involved genes enriched in specific functional categories. Extensive allele‐level alteration of H3K4me3 alone was positively correlated with genome‐wide changes in allele‐level gene expression, whereas at the total level, both H3K4me3 and H3K27me3 remodeling, although affecting just a small number of genes, contributes to the overall non‐additive gene expression to variable extents, depending on tissue/marker combinations. Our results emphasize the importance of allele‐level analysis in hybrids to assess the remodeling of epigenetic modifications and their relation to changes in gene expression.  相似文献   

2.
3.
Heterosis is the phenomenon in which hybrid progeny exhibits superior traits in comparison with those of their parents. Genomic variations between the two parental genomes may generate epistasis interactions, which is one of the genetic hypotheses explaining heterosis. We postulate that protein?protein interactions specific to F1 hybrids (F1‐specific PPIs) may occur when two parental genomes combine, as the proteome of each parent may supply novel interacting partners. To test our assumption, an inter‐subspecies hybrid interactome was simulated by in silico PPI prediction between rice japonica (cultivar Nipponbare) and indica (cultivar 9311). Four‐thousand, six‐hundred and twelve F1‐specific PPIs accounting for 20.5% of total PPIs in the hybrid interactome were found. Genes participating in F1‐specific PPIs tend to encode metabolic enzymes and are generally localized in genomic regions harboring metabolic gene clusters. To test the genetic effect of F1‐specific PPIs in heterosis, genomic selection analysis was performed for trait prediction with additive, dominant and epistatic effects separately considered in the model. We found that the removal of single nucleotide polymorphisms associated with F1‐specific PPIs reduced prediction accuracy when epistatic effects were considered in the model, but no significant changes were observed when additive or dominant effects were considered. In summary, genomic divergence widely dispersed between japonica and indica rice may generate F1‐specific PPIs, part of which may accumulatively contribute to heterosis according to our computational analysis. These candidate F1‐specific PPIs, especially for those involved in metabolic biosynthesis pathways, are worthy of experimental validation when large‐scale protein interactome datasets are generated in hybrid rice in the future.  相似文献   

4.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

5.
DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5′-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5′-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.  相似文献   

6.
Hybrid fitness is an important parameter to predict the evolutionary consequences of a hybridization event and to characterize hybrid zones. We studied fitness parameters of F1 and later‐generation hybrids between the lowland species Salix purpurea and the alpine S. helvetica that have recently emerged during colonization of an alpine glacier forefield. Fruit production (number of capsules per catkin and fruit set) did not differ between hybrids and parents, but the number of seeds per capsule of F1 hybrids was slightly lower than that of later‐generation hybrids and of the parents. Germination rates and seedling growth were tested on three substrates (pH 4.5, 7.0, and 8.0). Germination rates of seeds collected from F1 hybrids were lower on acid and neutral substrates, but equal at pH 8.0 compared to all other groups, while the seeds from later‐generation hybrids performed as well as the parents on all three substrates. In seedling growth, the colonizer S. purpurea performed better than all other taxa on all three substrates, while hybrids resembled the subalpine species S. helvetica. Results suggest that endogenous selection acts against F1 hybrids, but favors fitter genotypes in later‐generation hybrids. Exogenous selection via soil pH appears to be weak during seedling establishment. The pioneer vegetation on the glacier forefield may offer sufficient niche space for hybrid seedlings. Owing to the relatively high fitness of the hybrids and the scattered distribution of hybrids and parental individuals on the glacier forefield, this hybrid zone can be assigned to a mosaic model, probably facilitating gene flow and introgression between the parental species. As establishment of the hybrid zone appears to be linked to a colonization process, we propose to call it a pioneer mosaic hybrid zone.  相似文献   

7.

Background  

Heterosis is the superior performance of F1 hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis.  相似文献   

8.
Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d‐rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p‐rDNA dominant progenitor were meiotically unstable, frequently switching to co‐dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d‐rDNA dominance, indicating immediate suppression of p‐homeologs in F1 hybrids. Original p‐rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p‐rDNA and d‐rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co‐dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.  相似文献   

9.
The performance of hybrids relative to their parents is an important factor in speciation research. We measured the growth of 46 Saccharomyces yeast F1 interspecific and intraspecific hybrids, relative to the growth of each of their parents, in pairwise competition assays. We found that the growth of a hybrid relative to the average of its parents, a measure of mid‐parent heterosis, correlated with the difference in parental growth relative to their hybrid, a measure of phenotypic divergence, which is consistent with simple complementation of low fitness alleles in one parent by high fitness alleles in the other. Interspecific hybrids showed stronger heterosis than intraspecific hybrids. To manipulate parental phenotypic divergence independently of genotype, we also measured the competitive growth of a single interspecific hybrid relative to its parents in 12 different environments. In these assays, we not only identified a strong relationship between parental phenotypic divergence and mid‐parent heterosis as before, but, more tentatively, a weak relationship between phenotypic divergence and best‐parent heterosis, suggesting that complementation of deleterious mutations was not the sole cause of interspecific heterosis. Our results show that mating between different species can be beneficial, and demonstrate that competition assays between parents and offspring are a useful way to study the evolutionary consequences of hybridization.  相似文献   

10.
To study the consequences of hybridization and genome duplication on polyploid genome evolution and adaptation, we used independently formed hybrids (Spartina x townsendii and Spartina x neyrautii) that originated from natural crosses between Spartina alterniflora, an American introduced species, and the European native Spartina maritima. The hybrid from England, S. x townsendii, gave rise to the invasive allopolyploid, salt-marsh species, Spartina anglica. Recent studies indicated that allopolyploid speciation may be associated with rapid genetic and epigenetic changes. To assess this in Spartina, we performed AFLP (amplified fragment length polymorphism) and MSAP (methylation sensitive amplification polymorphism) on young hybrids and the allopolyploid. By comparing the subgenomes in the hybrids and the allopolyploid to the parental species, we inferred structural changes that arose repeatedly in the two independently formed hybrids. Surprisingly, 30% of the parental methylation patterns are altered in the hybrids and the allopolyploid. This high level of epigenetic regulation might explain the morphological plasticity of Spartina anglica and its larger ecological amplitude. Hybridization rather than genome doubling seems to have triggered most of the methylation changes observed in Spartina anglica.  相似文献   

11.
12.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

13.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

14.
15.
The genetic composition of a hybrid zone can provide insight into the evolution of diversification in plants. We carried out morphological and amplified fragment length polymorphism analyses to investigate the genetic composition of a hybrid zone between two violets, Viola bissetii Hemsl. and Viola rossii Maxim. Our aim was to clarify the formation and maintenance of hybrids between these Viola species. We found that most hybrid individuals (V. bissetii × V. rossii) were of the F1 generation, with a few of the F2 generation. We found no backcrosses. The scarcity of post‐F1 hybrids indicates that a species barrier is established between the parental species. The F1‐dominated hybrid zone occupied only a narrow, intermediate ecotone between the parental habitats, suggesting that selection by environmental factors against hybrids may help to maintain the current conditions in this hybrid zone.  相似文献   

16.
17.
Genetic distances (GDs) based on morphological characters, isozymes and storage proteins, and random amplified polymorphic DNAs (RAPD) were used to predict the performance and heterosis of crosses in oilseed rape (Brassica napus L.). Six male-sterile lines carrying the widely used Shaan2A cytoplasm were crossed with five restorer lines to produce 30 F1 hybrids. These 30 hybrids and their parents were evaluated for seven agronomically important traits and their mid-parent heterosis (MPH) at Yangling, Shaanxi province in Northwest China for 2 years. Genetic similarity among the parents based on 34 isozyme and seven protein markers was higher than that based on 136 RAPDs and/or 48 morphological markers. No significant correlation was detected among these three sets of data. Associations between the different estimates of GDs and F1 performance for some agronomic traits were significant, but not for seed yield. In order to enhance the predicting efficiency, we selected 114 significant markers and 43 favoring markers following statistical comparison of the mean values of the yield components between the heterozygous group (where the marker is present only in one parent of each hybrid) and the homozygous group (where the marker is either present or absent in both parents of each hybrid) of the 30 hybrids. Parental GD based on total polymorphic markers (GDtotal, indicating general heterozygosity), significant markers (GDsign, indicating specific heterozygosity) and favoring markers (GDfavor, indicating favoring-marker heterozygosity) were calculated. The correlation between GDfavor or GDsign and hybrid performance was higher than the correlation between GDtotal and hybrid performance. GDsign and GDfavor significantly correlated with plant height, seeds per silique and seed yield, but not with the MPH of the other six agronomic traits with the exception of plant height. The information obtained in this study on the genetic diversity of the parental lines does not appear to be reliable for predicting F1 yield and heterosis.  相似文献   

18.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

19.
Broadening the avenue of intersubgenomic heterosis in oilseed Brassica   总被引:1,自引:0,他引:1  
Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the “subgenome”. Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the Ar and Cc genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号