首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cheng YP  Yin JX  Cheng LP  He RR 《生理学报》2004,56(2):243-247
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25 nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25 nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导.  相似文献   

2.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响   总被引:2,自引:0,他引:2  
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1.  相似文献   

3.
腺苷抗豚鼠室性心律失常的电生理研究   总被引:1,自引:1,他引:0  
Zhao ZH  Zang WJ  Yu XJ  Zang YM 《生理学报》2003,55(1):36-41
实验用全细胞膜片钳技术在单个豚鼠心室肌细胞上研究了腺苷 (Ado)对正常及异丙肾上腺素 (Iso)致豚鼠心室肌细胞动作电位、迟后除极 (DAD)、L 型钙电流 (ICa.L)和短暂内向电流 (Iti)的作用。结果表明 :(1)Ado在2 0~ 10 0 μmol/L时对豚鼠心室肌细胞动作电位和ICa .L无明显直接作用 ,但却可明显降低Iso所致的动作电位时程(APD)延长和ICa .L峰值增大 ,Iso (10nmol/L)使细胞APD50 从 3 40± 2 1ms延长到 486± 2 8ms (P <0 0 1) ,APD90从 3 61± 17ms延长至 5 0 1± 2 9ms (P <0 0 1) ;ICa .L峰值从 - 6 5 3± 1 4pA/pF增大到 - 18 2 8± 2 4pA/pF (P <0 0 1) ,电流电压曲线明显左移和下移 ;Ado (5 0 μmol/L)使APD50 和APD90 降至 40 3± 19ms和 419± 2 6ms ,但并不影响动作电位其它参数 ,使ICa.L峰值降低至 - 10 2± 1 5pA/pF (P <0 0 1)。 (2 )Iso (3 0nmol/L)可诱发心室肌细胞产生DADs,其发生率为 10 0 % ;Ado (5 0 μmol/L)可完全抑制Iso引发DADs;细胞经 - 40~ +2 0mV、时程 2s的除极电压 ,Iso (3 0nmol/L)诱导出Iti,其发生率为 10 0 % ;Ado (5 0 μmol/L)可明显抑制Iso致Iti的发生 ,其发生率降为 14 3 %。研究结果提示 ,Ado对豚鼠心室肌细胞动作电位和ICa.L无明显直接作用 ,但却可显著降低Is  相似文献   

4.
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2004,56(6):713-716
本文旨在研究氨甲酰胆碱(carbachol, CCh)对豚鼠心肌的正性变力性机制。用Axon200A膜片钳放大器观察CCh 对电压钳制下的豚鼠心肌细胞L-型钙电流(ICa)和钠钙交换电流(INa/Ca)的效应。结果表明, CCh(100 μmol/L)分别使正向INa/Ca从对照组的(1.2 ± 0.1) pA/pF 增加到(2.0 ± 0.3) pA/pF,使反向 INa/Ca 从对照组的(1.3 ± 0.5) pA/pF 增加到(2.1 ± 0.8) pA/pF (P<0.01)。CCh对ICa无影响。CCh 对INa/Ca的激动作用可被阿托品和methoctramine所阻断。以上结果提示, CCh 对豚鼠心脏的正性变力作用是通过激动了钠钙交换,而且是 M2 毒蕈碱受体所介导的。  相似文献   

5.
目的和方法:采用全细胞式膜片钳技术,观察花生四烯酸(AA)对大鼠顶叶皮层神经元延迟整流钾电流(Ik)的影响。结果:①AA(10μmol/L)对大鼠顶叶皮层神经元Ik有抑制作用,抑制率为33.9%±8.74%(P<0.01)。②AA可使IK激活曲线的斜率因子变大且曲线向右移动,IK激活曲线的V1/2和k分别由给药前的(-55.3±0.9)mV和(10.3±0.4)mV,变为给药后的(-50.8±2.4)mV和(21.0±3.5)mV。③AA可使IK失活曲线斜率因子变大且曲线向左移动,IK失活曲线的V1/2和k分别由给药前的(-45.3±0.3)mV和(15.6±0.8)mV,变为给药后的(-70.9±1.9)mV和(36.5±2.1)mV。结论:花生四烯酸可抑制大鼠顶叶皮层神经元的延迟整流钾电流,并影响其动力学特征。  相似文献   

6.
ACh对大鼠皮层体感区神经元延迟整流钾电流的抑制作用   总被引:6,自引:1,他引:5  
Cui LW  Li YR  Yang L  Jia SW  Qu LH  Yao K  Jin HB 《生理学报》2006,58(1):58-64
利用全细胞膜片钳技术研究乙酰胆碱(acetylcholine,ACh)对大鼠皮层体感区神经元延迟整流钾电流(IK)的调制作用。结果表明:(1)ACh(0.1、1、10、100 μmol/L)对大鼠皮层体感区神经元IK有抑制作用,并具有剂量依赖性关系(P<0.01)。 (2)ACh可使IK激活曲线的斜率变大,并使激活曲线向超极化方向移动。IK激活曲线的半数激活电压(V1/12)和斜率因子(k)分别由给药前的(-41.8±9.7)mV和(30.7±7.2)mV变为给药后的(-122.4±38.6)mV和(42.4±7.0)mV。(3)100 μmol/L的N受体拮抗剂筒箭毒碱(tubocurarine)可减弱ACh对IK的抑制作用,在指令电压+60 mV时tubocurarine+ACh组的IK幅度下降了(16.9± 13.8)%(n=8),与10 μmol/L ACh组引起的(36.5±7.8)%的IK下降幅度相比,有极显著差异(P<0.01)。10 μmol/L的M1受体拮抗剂哌仑西平(pirenzepin)拮抗ACh对IK的抑制作用不明显(n=7,P>0.05);而10 μmol/L的M3受体拮抗剂4-DAMP可部分拮抗ACh对IK的抑制作用,并且4-DAMP+ACh组使IK的电流值下降了(26.8±4.7)%(n=6),与ACh组引起的IK电流下降相比,有显著差异(P<0.05)。(4)蛋白激酶C(protein kinase C,PKC)阻断剂chelerythrine拮抗ACh对IK的抑制作用,PKC激动剂PDBu可增强ACh对IK的抑制作用(P<0.05)。综上所述,ACh对人鼠皮层体感区神经元IK的抑制作用主要是通过烟碱受体(nAChRs)和M3受体介导,并经过PKC信号途径。  相似文献   

7.
目的:研究孤啡肽(N/OFQ)对大鼠顶叶皮层神经元瞬时外向钾电流(IA)的影响,初步探讨其作用的通道动力学机制。方法:采用全细胞膜片钳技术,观察N/OFQ对急性分离的大鼠顶叶皮层神经元IA的作用。结果:①0.1μmol/L N/OFQ使IA幅值由给药前的(5356.1±361.6)pA下降为(4113.3±312.7)pA,抑制率为23.20%±2.17%(P〈0.01,n=10)。②0.1μmol/L N/OFQ使IA的电流-电压(I-V)曲线降低(P〈0.01,n=10)。③0.1μmol/L N/OFQ使,IA激活曲线的半数激活电压(V1/2)和斜率因子(κ)分别由给药前的(-9.2±2.5)mV和(20.4±2.3)mV变为给药后的(30.6±3.7)mV(P〈0.01,n=8)和(22.6±2.1)mV(P〉0.05,n=8)。④0.1μmol/L N/OFQ使IA失活曲线的半数失活电压(V1/2)和斜率因子(κ)分别由给药前的(-64.1±3.2)mV和(21.5±2.1)mV变为给药后的(-55.9±1.9)mV(P〈0.05,n=5)和(19.6±2.2)mV(P〉0.05,n=5)。结论:N/OFQ可抑制大鼠顶叶皮层神经元IA,使其激活曲线、失活曲线均右移。  相似文献   

8.
目的 :观察蛋白激酶C(PKC)对大鼠离体肺动脉环张力及反应性的调节作用。方法 :取Wistar大鼠肺动脉 ,观察在离体情况下PKC激活剂PMA及PKC抑制剂RO3 182 2 0对肺动脉环张力的直接作用 ;对氯化钾 (KCl)、5 羟色胺 (5 HT)和缺氧引起的收缩反应的影响 ;以及PMA对乙酰胆碱 (ACh)介导的内皮依赖性舒张 (EDR)和硝普钠(SNP)介导的内皮非依赖性舒张 (EIDR)反应的影响。结果 :①PMA(5 0 0nmol/L)使肺动脉环产生缓慢增强、持久的收缩 ,随PMA浓度增加而增强 ,RO3 182 2 0 (5 μmol/L)可完全阻断PMA的上述作用 ;②PMA可增强肺动脉对KCl、5 HT的收缩反应 ,该作用随PMA浓度增加而增强 ;③RO3 182 2 0 (5 μmol/L)几乎可以完全阻断离体肺动脉环对缺氧的第二相收缩反应 ;④PMA(10nmol/L)在 10min内完全逆转ACh(10 μmol/L)介导的EDR ,PMA(10nmol/L)还可使ACh的浓度一反应显著减弱 ,达到最大舒张反应的一半时对应的ACh浓度 (EC50 )显著增加 ,最大舒张反应明显减小 ;而PMA对SNP介导的EIDR无显著影响。结论 :PKC在与肺动脉张力及反应性的调节有关的细胞内生物信号传递过程中具有重要作用。  相似文献   

9.
Li YR  Yang BF  Xu CQ  Zhou J  Yang YB  Zhang JY  Sun MZ 《生理学报》2000,52(5):427-430
使用全细胞膜片箝技术, 研究RP62719对内向整流钾电流(IK1)、瞬时外向钾电流(Ito)和延迟外向整流钾电流(IK)的作用, 并探讨其抗心律失常作用的机制.实验结果表明, 在指令电压为-100 mV时, RP62719可显著抑制豚鼠心室肌细胞IK1, 半数抑制浓度(IC50)为5.0±1.0 μmol/L.RP62719 10 μmol/L在+40 mV时对犬心室肌细胞Ito抑制率为84.0±4.4%, IC50为1.2±0.51 μmol/L.在+40 mV时, 50 μmol/L RP62719还可使豚鼠心室肌细胞IKstep 减少50.0±8.3%, IKtail减少56.0±4.9%, IC50分别为4.2±0.8 μmol/L和3.3±0.75 μmol/L.提示RP62719抗心律失常的离子机制与其对IK1、Ito及IK的抑制有关.  相似文献   

10.
Du YM  Tang M  Liu CJ  Ke QM  Luo HY  Hu XW 《生理学报》2004,56(3):282-287
应用全细胞膜片钳技术研究了血小板活化因子(platelet activatingfactor,PAF)对豚鼠心室肌细胞动作电位和钾电流的影响.结果发现,当电极内液ATP浓度为5 mmol/L(模拟正常条件)时,1 μmol/L PAF使APD90由对照的225.8±23.3 ms延长至352.8±29.8ms(n=5,P<0.05);使IK尾电流在指令电压 30 mV由对照的173.5±16.7 pA降至152.1±11.5 pA(P<0.05,n=4);使Ikl在指令电压为-120 mV时由对照组的-6.1±1.3 nA降至-5.6±1.1 nA(P<0.05,n=5);但PAF在生理膜电位范围(-90mV~ 20mV)对IK1没有影响.当电极内液ATP浓度为0mmol/L时,IK·ATP开放(模拟缺血条件),1 μmol/LPAF却显著缩短APD90,由对照的153±24.6 ms缩短至88.2±19.4 ms(n=5,P<0.01).而用1 μmol/L格列本脲(IK·ATP的特异阻断剂)预处理后,恢复了PAF可显著延长动作电位时程的作用.结果提示,PAF可能扩大缺血心肌和正常心肌细胞动作电位时程的不均一性,是缺血/再灌注性心律失常发生的重要原因.  相似文献   

11.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

12.
We have purified from human placenta a low molecular mass substance that inhibits cAMP-dependent protein kinase and activates protein kinase C. This protein kinase regulator was purified in three steps: (1) homogenizing placentas in chloroform/methanol and extracting the regulator into water; (2) eluting a strong anion exchange high performance liquid chromatography (HPLC) column with a quaternary gradient; and (3) eluting a reversed-phase HPLC column with a binary gradient. The regulator was found to be highly purified by HPLC, thin-layer chromatography (TLC) and laser desorption ionization mass spectrometry with a molecular mass of 703 Daltons by the latter procedure. The physical and biochemical properties of this protein kinase regulator suggest that it is a phospholipid but it did not co-elute by HPLC or by TLC with any of the known phospholipid activators of protein kinase C.  相似文献   

13.
Identifying conserved pockets on the surfaces of a family of proteins can provide insight into conserved geometric features and sites of protein–protein interaction. Here we describe mapping and comparison of the surfaces of aligned crystallographic structures, using the protein kinase family as a model. Pockets are rapidly computed using two computer programs, FADE and Crevasse. FADE uses gradients of atomic density to locate grooves and pockets on the molecular surface. Crevasse, a new piece of software, splits the FADE output into distinct pockets. The computation was run on 10 kinase catalytic cores aligned on the αF‐helix, and the resulting pockets spatially clustered. The active site cleft appears as a large, contiguous site that can be subdivided into nucleotide and substrate docking sites. Substrate specificity determinants in the active site cleft between serine/threonine and tyrosine kinases are visible and distinct. The active site clefts cluster tightly, showing a conserved spatial relationship between the active site and αF‐helix in the C‐lobe. When the αC‐helix is examined, there are multiple mechanisms for anchoring the helix using spatially conserved docking sites. A novel site at the top of the N‐lobe is present in all the kinases, and there is a large conserved pocket over the hinge and the αC‐β4 loop. Other pockets on the kinase core are strongly conserved but have not yet been mapped to a protein–protein interaction. Sites identified by this algorithm have revealed structural and spatially conserved features of the kinase family and potential conserved intermolecular and intramolecular binding sites.  相似文献   

14.
Protein kinases form a large family of enzymes that play a major role in a number of live processes. The study of their action is important for the understanding of the transformation mechanisms and of the normal and pathological growth events. The quality of an enzyme assay is often the key point of an enzymatic study. It must be flexible and compatible with various experimental conditions, such as those for the purification process, the screening of inhibitors and the substrate specificity studies. As will be shown in the present review, two categories of substrates, peptidic and proteic, should be distinguished. The use of peptide substrates facilitates the determination of the recognition requirements of the enzyme and of the kinetic effects of even minute variations in their sequence. These linear peptide structures are assumed to mimic a complex interaction between the enzyme and a proteic substrate in which distant amino acids in the sequence are vicinal in the folded substrate. Less amenable to a systematic study, but probably more adequate to investigate the natural substrate of a given kinase, are the proteic substrates. Obviously the tools to measure protein kinase activities are not the same in these two cases. The main difficulty in assaying protein kinases is the use of labelles γ-ATP, mostly at large excess concentration, since the final product of the reaction has to be separated from the non-reacted labelled ATP. In the case of peptide substrates, the difficulty is to separate them from ATP basing on differences of molecular mass. Despite the efforts of many investigators to rely upon differences in solubility, in charges or in “affinity”, this separation, which is crucial for the assay, is still an unsolved experimental problem. Chromatographic, as well as electrophoretic assays appeared relatively late in this domain, and more work in assessing new methodologies might bring new breakthroughs in the next few years. Specific, simple and reliable kinase assays are still a major challenge. Their improvement will help to conduct specificity studies, to elucidate complex growth mechanisms in which they are involved and to discover more selective potent inihibitors.  相似文献   

15.
cAMP-dependent protein kinase in the supernatant fraction of the homogenate of sea urchin eggs and embryos obtained by centrifugation at 105,000g was investigated in the present study. In the previous report, the dissociation constant between cAMP-binding proteins and cAMP changed during the development. This suggests that the nature of cAMP-dependent protein kinase, which has been well established to be the major cAMP receptor, changes during the development. In the present study, four protein kinases were separated through DEAE-cellulose column from the supernatant of unfertilized egg homogenate. One of them was cAMP-dependent protein kinase. The others were cAMP-independent ones. One among them was phosvitin kinase, and the others were not identified at present. The activity of cAMP-dependent protein kinase gradually increased during a period from fertilization to the swimming blastula stage. During this period, cleavages occurred at a high rate, and the rate decreased after hatching out. Thus, it is supposed that cAMP-dependent protein kinase in the supernatant may take a part in the mechanism of cleavage. The activity, however, became very low at the mesenchyme blastula, the gastrula, and the pluteus stages. cAMP-binding capacity was observed in the sedimentable fraction and the supernatant fraction, respectively, obtained by 105,000g centrifugation at all stages examined. If the structure-bound cAMP-binding protein is also cAMP-dependent protein kinase, it may play different roles in the mechanism of development.  相似文献   

16.
Interactions of protein kinase CK2 subunits   总被引:3,自引:0,他引:3  
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   

18.
19.
Protein kinases exhibit various degrees of substrate specificity. The large number of different protein kinases in the eukaryotic proteomes makes it impractical to determine the specificity of each enzyme experimentally. To test if it were possible to discriminate potential substrates from non-substrates by simple computational techniques, we analysed the binding enthalpies of modelled enzyme-substrate complexes and attempted to correlate it with experimental enzyme kinetics measurements. The crystal structures of phosphorylase kinase and cAMP-dependent protein kinase were used to generate models of the enzyme with a series of known peptide substrates and non-substrates, and the approximate enthalpy of binding assessed following energy minimization. We show that the computed enthalpies do not correlate closely with kinetic measurements, but the method can distinguish good substrates from weak substrates and non-substrates.  相似文献   

20.
Various histone fractions from several sources differ markedly in their degree of dependence on protein kinase stimulatory modulator for maximum phosphorylation by rat liver cyclic GMP-dependent protein kinase in the presence of cyclic GMP. DEAE-cellulose and QAE-Sephadex chromatography of arginine-rich and mixed histones resulted in the histones displaying increased dependence on the modulator. This increased dependence was apparently due to the removal of contaminating modulator as heat-stable modulator activity could be eluted from the DEAE-cellulose column. Lysine-rich histone was not markedly dependent on the modulator before or after QAE-Sephadex chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号