首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Candidate gene case-control studies have identified several single nucleotide polymorphisms (SNPs) that are associated with asthma susceptibility. Most of these studies have been restricted to evaluations of specific SNPs within a single gene and within populations from European ancestry. Recently, there is increasing interest in understanding racial differences in genetic risk associated with childhood asthma. Our aim was to compare association patterns of asthma candidate genes between children of European and African ancestry.

Methodology/Principal Findings

Using a custom-designed Illumina SNP array, we genotyped 1,485 children within the Greater Cincinnati Pediatric Clinic Repository and Cincinnati Genomic Control Cohort for 259 SNPs in 28 genes and evaluated their associations with asthma. We identified 14 SNPs located in 6 genes that were significantly associated (p-values <0.05) with childhood asthma in African Americans. Among Caucasians, 13 SNPs in 5 genes were associated with childhood asthma. Two SNPs in IL4 were associated with asthma in both races (p-values <0.05). Gene-gene interaction studies identified race specific sets of genes that best discriminate between asthmatic children and non-allergic controls.

Conclusions/Significance

We identified IL4 as having a role in asthma susceptibility in both African American and Caucasian children. However, while IL4 SNPs were associated with asthma in asthmatic children with European and African ancestry, the relative contributions of the most replicated asthma-associated SNPs varied by ancestry. These data provides valuable insights into the pathways that may predispose to asthma in individuals with European vs. African ancestry.  相似文献   

2.
The relevance of loci associated with blood lipids recently identified in European populations in individuals of African ancestry is unknown. We tested association between lipid traits and 36 previously described single-nucleotide polymorphisms (SNPs) in 1,466 individuals of African ancestry from Spanish Town, Jamaica. For the same allele and effect direction as observed in individuals of European ancestry, SNPs at three loci (1p13, 2p21, and 19p13) showed statistically significant association (p < 0.05) with LDL, two loci (11q12 and 20q13) showed association with HDL cholesterol, and two loci (11q12 and 2p24) showed association with triglycerides. The most significant association was between a SNP at 1p13 and LDL cholesterol (p = 4.6 × 10?8). This SNP is in a linkage disequilibrium region containing four genes (CELSR2, PSRC1, MYBPHL, and SORT1) and was recently shown to relate to risk for myocardial infarction. Overall, the results of this study suggest that much of the genetic variation which influences blood lipids is shared across ethnic groups.  相似文献   

3.
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.  相似文献   

4.

Background

Asthma is a common complex condition with clear racial and ethnic differences in both prevalence and severity. Asthma consultation rates, mortality, and severe symptoms are greatly increased in African descent populations of developed countries. African ancestry has been associated with asthma, total serum IgE and lower pulmonary function in African-admixed populations. To replicate previous findings, here we aimed to examine whether African ancestry was associated with asthma susceptibility in African Americans. In addition, we examined for the first time whether African ancestry was associated with asthma exacerbations.

Methodology/Principal Findings

After filtering for self-reported ancestry and genotype data quality, samples from 1,117 self-reported African-American individuals from New York and Baltimore (394 cases, 481 controls), and Chicago (321 cases followed for asthma exacerbations) were analyzed. Genetic ancestry was estimated based on ancestry informative markers (AIMs) selected for being highly divergent among European and West African populations (95 AIMs for New York and Baltimore, and 66 independent AIMs for Chicago). Among case-control samples, the mean African ancestry was significantly higher in asthmatics than in non-asthmatics (82.0±14.0% vs. 77.8±18.1%, mean difference 4.2% [95% confidence interval (CI):2.0–6.4], p<0.0001). This association remained significant after adjusting for potential confounders (odds ratio: 4.55, 95% CI: 1.69–12.29, p = 0.003). African ancestry failed to show an association with asthma exacerbations (p = 0.965) using a model based on longitudinal data of the number of exacerbations followed over 1.5 years.

Conclusions/Significance

These data replicate previous findings indicating that African ancestry constitutes a risk factor for asthma and suggest that elevated asthma rates in African Americans can be partially attributed to African genetic ancestry.  相似文献   

5.
Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10−6), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10−8). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10−11). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.  相似文献   

6.
The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR). We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.  相似文献   

7.
Schizophrenia is a severe and highly heritable neuropsychiatric disorder. Recent genetic analyses including genome-wide association studies (GWAS) have implicated multiple genome-wide significant variants for schizophrenia among European populations. However, many of these risk variants were not largely validated in other populations of different ancestry such as Asians. To validate whether these European GWAS significant loci are associated with schizophrenia in Asian populations, we conducted a systematic literature search and meta-analyses on 19 single nucleotide polymorphisms (SNPs) in Asian populations by combining all available case-control and family-based samples, including up to 30,000 individuals. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (ORs) and 95 % confidence intervals (CIs). Among the 19 GWAS loci, we replicated the risk associations of nine markers (e.g., SNPs at VRK2, ITIH3/4, NDST3, NOTCH4) surpassing significance level (two-tailed P?<?0.05), and three additional SNPs in MIR137 and ZNF804A also showed trend associations (one-tailed P?<?0.05). These risk associations are in the same directions of allelic effects between Asian replication samples and initial European GWAS findings, and the successful replications of these GWAS loci in a different ethnic group provide stronger evidence for their clinical associations with schizophrenia. Further studies, focusing on the molecular mechanisms of these GWAS significant loci, will become increasingly important for understanding of the pathogenesis to schizophrenia.  相似文献   

8.
《PloS one》2014,9(12)

Background

Coronary heart disease (CHD) is a leading cause of morbidity and mortality in African Americans. However, there is a paucity of studies assessing genetic determinants of CHD in African Americans. We examined the association of published variants in CHD loci with incident CHD, attempted to fine map these loci, and characterize novel variants influencing CHD risk in African Americans.

Methods and Results

Up to 8,201 African Americans (including 546 first CHD events) were genotyped using the MetaboChip array in the Atherosclerosis Risk in Communities (ARIC) study and Women''s Health Initiative (WHI). We tested associations using Cox proportional hazard models in sex- and study-stratified analyses and combined results using meta-analysis. Among 44 validated CHD loci available in the array, we replicated and fine-mapped the SORT1 locus, and showed same direction of effects as reported in studies of individuals of European ancestry for SNPs in 22 additional published loci. We also identified a SNP achieving array wide significance (MYC: rs2070583, allele frequency 0.02, P = 8.1×10−8), but the association did not replicate in an additional 8,059 African Americans (577 events) from the WHI, HealthABC and GeneSTAR studies, and in a meta-analysis of 5 cohort studies of European ancestry (24,024 individuals including 1,570 cases of MI and 2,406 cases of CHD) from the CHARGE Consortium.

Conclusions

Our findings suggest that some CHD loci previously identified in individuals of European ancestry may be relevant to incident CHD in African Americans.  相似文献   

9.
Age-adjusted mortality rates for prostate cancer are higher for African-American men compared with those of European ancestry. Recent data suggest that West African men also have elevated risk for prostate cancer relative to European men. Genetic susceptibility to prostate cancer could account for part of this difference. We conducted a genome-wide association study (GWAS) of prostate cancer in West African men in the Ghana Prostate Study. Association testing was performed using multivariable logistic regression adjusted for age and genetic ancestry for 474 prostate cancer cases and 458 population-based controls on the Illumina HumanOmni-5 Quad BeadChip. The most promising association was at 10p14 within an intron of a long non-coding RNA (lncRNA RP11-543F8.2) 360 kb centromeric of GATA3 (p = 1.29E?7). In sub-analyses, SNPs at 5q31.3 were associated with high Gleason score (≥7) cancers, the strongest of which was a missense SNP in PCDHA1 (rs34575154, p = 3.66E?8), and SNPs at Xq28 (rs985081, p = 8.66E?9) and 6q21 (rs2185710, p = 5.95E?8) were associated with low Gleason score (<7) cancers. We sought to validate our findings in silico in the African Ancestry Prostate Cancer GWAS Consortium, but only one SNP, at 10p14, replicated at p < 0.05. Of the 90 prostate cancer loci reported from studies of men of European, Asian or African-American ancestry, we were able to test 81 in the Ghana Prostate Study, and 10 of these replicated at p < 0.05. Further genetic studies of prostate cancer in West African men are needed to confirm our promising susceptibility loci.  相似文献   

10.

Background

The standard approach to determine unique or shared genetic factors across populations is to identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a uniform stringent threshold on p values may not be reproducible across populations. Here, we developed rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527 affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the Genotypes and Phenotypes database.

Results

Rank-based analyses showed that there are shared genetic factors for asthma across populations, more at the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes (RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDE1C, SEMA5A, and CTNNA2) mapped by these SNPs were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest association in European (p value?=?2.55?×?10?7) and was replicated in African (2.57?×?10?4) and Hispanic (1.18?×?10?3) Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and respiratory diseases.

Conclusion

Our rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of top-ranked asthma genes across populations suggests that such loci are less likely to be false positives and could indicate true associations. Variants that are associated with asthma across populations could be used to identify individuals who are at high risk for asthma regardless of genetic ancestry.
  相似文献   

11.
CYP19A1 facilitates the bioconversion of estrogens from androgens. CYP19A1 intron single nucleotide polymorphisms (SNPs) may alter mRNA splicing, resulting in altered CYP19A1 activity, and potentially influencing disease susceptibility. Genetic studies of CYP19A1 SNPs have been well documented in populations of European ancestry; however, studies in populations of African ancestry are limited. In the present study, ten ‘candidate’ intronic SNPs in CYP19A1 from 125 African Americans (AA) and 277 European Americans (EA) were genotyped and their frequencies compared. Allele frequencies were also compared with HapMap and ASW 1000 Genomes populations. We observed significant differences in the minor allele frequencies between AA and EA in six of the ten SNPs including rs10459592 (p<0.0001), rs12908960 (p<0.0001), rs1902584 (p = 0.016), rs2470144 (p<0.0001), rs1961177 (p<0.0001), and rs6493497 (p = 0.003). While there were no significant differences in allele frequencies between EA and CEU in the HapMap population, a 1.2- to 19-fold difference in allele frequency for rs10459592 (p = 0.004), rs12908960 (p = 0.0006), rs1902584 (p<0.0001), rs2470144 (p = 0.0006), rs1961177 (p<0.0001), and rs6493497 (p = 0.0092) was observed between AA and the Yoruba (YRI) population. Linkage disequilibrium (LD) blocks and haplotype clusters that is unique to the EA population but not AA was also observed. In summary, we demonstrate that differences in the allele frequencies of CYP19A1 intron SNPs are not consistent between populations of African and European ancestry. Thus, investigations into whether CYP19A1 intron SNPs contribute to variations in cancer incidence, outcomes and pharmacological response seen in populations of different ancestry may prove beneficial.  相似文献   

12.

Introduction

C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations.

Methods

Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry.

Results

Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10−8) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058).

Conclusions

Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease.  相似文献   

13.
Variation in gene expression is a fundamental aspect of human phenotypic variation. Several recent studies have analyzed gene expression levels in populations of different continental ancestry and reported population differences at a large number of genes. However, these differences could largely be due to non-genetic (e.g., environmental) effects. Here, we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that individuals from this population inherit variable proportions of two continental ancestries. We first relate gene expression levels in individual African Americans to their genome-wide proportion of European ancestry. The results provide strong evidence of a genetic contribution to expression differences between European and African populations, validating previous findings. Second, we infer local ancestry (0, 1, or 2 European chromosomes) at each location in the genome and investigate the effects of ancestry proximal to the expressed gene (cis) versus ancestry elsewhere in the genome (trans). Both effects are highly significant, and we estimate that 12±3% of all heritable variation in human gene expression is due to cis variants.  相似文献   

14.
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.  相似文献   

15.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94<P<5×10−8, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2×10−23 < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.  相似文献   

16.
We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it.  相似文献   

17.
African ancestry individuals have a more favorable lipoprotein profile than Caucasians, although the mechanisms for these differences remain unclear. We measured fasting serum lipoproteins and genotyped 768 tagging or potentially functional single nucleotide polymorphisms (SNPs) across 33 candidate gene regions in 401 Afro-Caribbeans older than 18 years belonging to 7 multi-generational pedigrees (mean family size 51, range 21–113, 3,426 relative pairs). All lipoproteins were significantly heritable (P < 0.05). Gender-specific analysis showed that heritability for triglycerides was much higher (P < 0.01) in women than in men (women, 0.62 ± 0.18, P < 0.01; men, 0.13 ± 0.17, P > 0.10), but the heritability for LDL cholesterol (LDL-C) was higher (P < 0.05) in men than in women (men, 0.79 ± 0.21, P < 0.01; women, 0.39 ± 0.12, P < 0.01). The top 14 SNPs that passed the false discovery rate threshold in the families were then tested for replication in an independent population-based sample of 1,750 Afro-Caribbean men aged 40+ years. Our results revealed significant associations for three SNPs in two genes (rs5929 and rs6511720 in LDLR and rs7517090 in PCSK9) and LDL-C in both the family study and in the replication study. Our findings suggest that LDLR and PCSK9 variants may contribute to a variation in LDL-C among African ancestry individuals. Future sequencing and functional studies of these loci may advance our understanding of genetic factors contributing to LDL-C in African ancestry populations.Lipoprotein abnormalities, characterized by elevated levels of LDL cholesterol (LDL-C) and triglycerides (TRIG) and low levels of HDL cholesterol (HDL-C), have a central role in the development of atherosclerotic coronary heart disease (CHD). A recent meta-analysis, including 3,000 individuals with CHD-related deaths, showed that HDL-C and LDL-C are independently associated with CHD risk (1). There is also considerable evidence that high levels of TRIG are an additional, independent risk factor for CHD (2, 3), although this is still controversial (4).Individuals of African ancestry have a more favorable lipoprotein profile than Caucasians, characterized by lower levels of TRIG and higher levels of HDL-C (58). The mechanisms responsible for these ethnic differences remain to be defined. In particular, the differences in TRIG levels are independent of the greater degree of obesity among individuals of African ancestry and several other risk factors and appear to be consistent across African populations in different environments (9), indicating a possible role of genetic factors. Although genetic factors are important in determining lipoprotein levels, little data exists regarding the importance of heredity and specific genetic factors in determining lipoprotein levels in populations of African ancestry, especially outside the US, and the findings from previous studies in African-Americans may not necessarily apply to other African ancestry populations. Recently, several genome-wide association studies identified a number of loci contributing to inter-individual variation in lipoprotein levels (10, 11). However, the majority of these studies were restricted to Caucasian populations. Given the ethnic differences in lifestyle and environmental factors, as well as in genetic background, it is important to examine genes related to lipoprotein metabolism in different ethnic groups. Therefore, we examined the heritability of fasting, serum levels of HDL-C, LDL-C, and TRIG and systematically screened for association with 33 positional and biological candidate genes in large, multigenerational families of African ancestry.  相似文献   

18.
Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.  相似文献   

19.
There are considerable racial disparities in prostate cancer risk, with a 60% higher incidence rate among African-American (AA) men compared with European-American (EA) men, and a 2.4-fold higher mortality rate in AA men than in EA men. Recently, studies have implicated several African-ancestry associated prostate cancer susceptibility loci on chromosome 8q24. In the current study, we performed admixture mapping in AA men from two independent case–control studies of prostate cancer to confirm the 8q24 ancestry association and also identify other genomic regions that may harbor prostate cancer susceptibility genes. A total of 482 cases and 261 controls were genotyped for 1,509 ancestry informative markers across the genome. The mean estimated individual admixture proportions were 20% European and 80% African. The most significant observed increase in European ancestry occurred at rs2141360 on chromosome 7q31 in both the case-only (P = 0.0000035) and case–control analyses. The most significant observed increase in African ancestry across the genome occurred at a locus on chromosome 5q35 identified by SNPs rs7729084 (case-only analysis P = 0.002), and rs12474977 (case–control analysis P = 0.004), which are separated by 646 kb and were adjacent to one another on the panel. On chromosome 8, rs4367565 was associated with the greatest excess African ancestry in both the case-only and case–control analyses (case-only and case–control P = 0.02), confirming previously reported African-ancestry associations with chromosome 8q24. In conclusion, we confirmed ancestry associations on 8q24, and identified additional ancestry-associated regions potentially harboring prostate cancer susceptibility loci.  相似文献   

20.
Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号