首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sequence-tagged linkage map of Brassica rapa   总被引:4,自引:0,他引:4       下载免费PDF全文
Kim JS  Chung TY  King GJ  Jin M  Yang TJ  Jin YM  Kim HI  Park BS 《Genetics》2006,174(1):29-39
A detailed genetic linkage map of Brassica rapa has been constructed containing 545 sequence-tagged loci covering 1287 cM, with an average mapping interval of 2.4 cM. The loci were identified using a combination of 520 RFLP and 25 PCR-based markers. RFLP probes were derived from 359 B. rapa EST clones and amplification products of 11 B. rapa and 26 Arabidopsis. Including 21 SSR markers provided anchors to previously published linkage maps for B. rapa and B. napus and is followed as the referenced mapping of R1-R10. The sequence-tagged markers allowed interpretation of the pattern of chromosome duplications within the B. rapa genome and comparison with Arabidopsis. A total of 62 EST markers showing a single RFLP band were mapped through 10 linkage groups, indicating that these can be valuable anchoring markers for chromosome-based genome sequencing of B. rapa. Other RFLP probes gave rise to 2-5 loci, inferring that B. rapa genome duplication is a general phenomenon through 10 chromosomes. The map includes five loci of FLC paralogues, which represent the previously reported BrFLC-1, -2, -3, and -5 and additionally identified BrFLC3 paralogues derived from local segmental duplication on R3.  相似文献   

2.
An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.  相似文献   

3.
Many previous studies have provided evidence for genome changes in polyploids, but there are little data on the overall population dynamics of genome change and whether it causes phenotypic variability. We analyzed genetic, epigenetic, gene expression, and phenotypic changes in approximately 50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa. A previous analysis of the first generation (S0) found that genetic changes were rare, and cytosine methylation changes were frequent. Our analysis of a later generation found that most S0 methylation changes remained fixed in their S5 progeny, although there were some reversions and new methylation changes. Genetic changes were much more frequent in the S5 generation, occurring in every line with lines normally distributed for number of changes. Genetic changes were detected on 36 of the 38 chromosomes of the S5 allopolyploids and were not random across the genome. DNA fragment losses within lines often occurred at linked marker loci, and most fragment losses co-occurred with intensification of signal from homoeologous markers, indicating that the changes were due to homoeologous nonreciprocal transpositions (HNRTs). HNRTs between chromosomes A1 and C1 initiated in early generations, occurred in successive generations, and segregated, consistent with a recombination mechanism. HNRTs and deletions were correlated with qualitative changes in the expression of specific homoeologous genes and anonymous cDNA amplified fragment length polymorphisms and with phenotypic variation among S5 polyploids. Our data indicate that exchanges among homoeologous chromosomes are a major mechanism creating novel allele combinations and phenotypic variation in newly formed B. napus polyploids.  相似文献   

4.
A genetic linkage map consisting of 399 RFLP-defined loci was generated from a cross between resynthesized Brassica napus (an interspecific B. rapa x B. oleracea hybrid) and "natural" oilseed rape. The majority of loci exhibited disomic inheritance of parental alleles demonstrating that B. rapa chromosomes were each pairing exclusively with recognisable A-genome homologues in B. napus and that B. oleracea chromosomes were pairing similarly with C-genome homologues. This behaviour identified the 10 A genome and 9 C genome linkage groups of B. napus and demonstrated that the nuclear genomes of B. napus, B. rapa, and B. oleracea have remained essentially unaltered since the formation of the amphidiploid species, B. napus. A range of unusual marker patterns, which could be explained by aneuploidy and nonreciprocal translocations, were observed in the mapping population. These chromosome abnormalities were probably caused by associations between homoeologous chromosomes at meiosis in the resynthesized parent and the F1 plant leading to nondisjunction and homoeologous recombination.  相似文献   

5.
R J Snowdon  W K?hler  A K?hler 《Génome》1997,40(4):582-587
Using fluorescence in situ hybridization, we located ribosomal DNA loci on prometaphase chromosomes of the diploid species Brassica rapa and Brassica oleracea and their amphidiploid Brassica napus. Based on comparisons of chromosome morphology and hybridization patterns, we characterized the individual B. napus rDNA loci according to their presumed origins in the Brassica A and C genomes. As reported in other studies, the sum of rDNA loci observed on B. rapa (AA genome) and B. oleracea (CC genome) chromosomes was one greater than the total number of loci seen in their amphidiploid B. napus (AACC). Evidence is presented that this reduction in B. napus rDNA locus number results from the loss of the smallest A genome rDNA site in the amphidiploid.  相似文献   

6.
刘仁虎  孟金陵 《遗传学报》2006,33(9):814-823
采用RFLP和AFLP标记对来自中国和欧美的7份甘蓝型油菜和22份白菜型油菜进行了遗传多样性分析。在这29份材料中,166个酶-探针组合和2对AFLP引物共检测到1477个RFLP标记和183个AFLP标记。RFLP数据显示以拟南芥EST克隆作探针比用油菜基因组克隆做探针能检测到更多的多态性位点,且采用EcoR Ⅰ或BamH Ⅰ酶切比HindⅢ酶切多态性好,白菜型油菜和甘蓝型油菜中基因的拷贝数平均都为3个左右。UPGMA聚类分析表明中国白菜型油菜的遗传多样性比甘蓝型油菜和欧美白菜型油菜丰富,欧美甘蓝型油菜与欧美白菜型油菜聚为一类,而与中国甘蓝型油菜差异更大。中国白菜型油菜丰富的遗传多样性为中国甘蓝型油菜的改良提供了宝贵的资源,揭示了利用白菜型油菜A基因组和甘蓝型油菜A基因组间亚基因组杂种优势的可能性。  相似文献   

7.
8.
The crop species within the genus Brassica have highly replicated genomes. Three base 'diploid' species, Brassica oleracea , B. nigra and B. rapa , are likely ancient polyploids, and three derived allopolyploid species, B. carinata , B. juncea and B. napus , are created from the interspecific hybridization of these base genomes. The base Brassica genome is thought to have hexaploid ancestry, and both recent and ancient polyploidization events have been proposed to generate a large number of genome rearrangements and novel genetic variation for important traits. Here, we revisit and refine these hypotheses. We have examined the B. oleracea linkage map using the Arabidopsis thaliana genome sequence as a template and suggest that there is strong evidence for genome replication and rearrangement within the base Brassicas, but less evidence for genome triplication. We show that novel phenotypic variation within the base Brassicas can be achieved by replication of a single gene, BrFLC , that acts additively to influence flowering time. Within the derived allopolyploids, intergenomic heterozygosity is associated with higher seed yields. Some studies have reported that de novo genomic variation occurs within derived polyploid genomes, whereas other studies have not detected these changes. We discuss reasons for these different findings. Large translocations and tetrasomic inheritance can explain some but not all genomic changes within the polyploids. Transpositions and other small-scale sequence changes probably also have contributed to genomic novelty. Our results have shown that the Brassica genomes are remarkably plastic, and that polyploidy generates novel genetic variation through gene duplication, intergenomic heterozygosity and perhaps epigenetic change.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 665–674.  相似文献   

9.
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.  相似文献   

10.
Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be duplicated and rearranged to generate the present-day B. napus genome. The conserved regions extended over lengths as great as 50 cM in the B. napus genetic map, equivalent to approximately 9 Mb of contiguous sequence in the Arabidopsis genome. There was also evidence for conservation of chromosome landmarks, particularly centromeric regions, between the two species. The observed segmental structure of the Brassica genome strongly suggests that the extant Brassica diploid species evolved from a hexaploid ancestor. The comparative map assists in exploiting the Arabidopsis genomic sequence for marker and candidate gene identification within the larger, intractable genomes of the Brassica polyploids.  相似文献   

11.
Moricandia is the only genus with C3-C4 species within the family of Cruciferae. To provide the basic information of transferring C3-C4 and other important characteristics from Moricandia to Brassica crops, the relationships between Moricandia and Brassica species were studied based on crossability and RFLP fingerprinting. The crossability was very low between the two genera in the experiment. There was no hybrid seed obtained between M. arvensis and B. rapa though 8 000 flowers were crossed. 2 989 cross-pollinated ovaries were cultured and also no hybrid embryo was developed. However, four intergeneric hybrid shoots were generated from 105 cultured ovaries in the combination of M. arvensis x B. napus. The nucleus DNA polymorphism of restriction loci was detected with 23 genic DNA clones of B. napus for the samples of B. napus, B. rapa and B. oleracea, M. arvensis and M. nit, ns. A high homology was found between Moricandia and Brassica species. The similarity between M. nitens and B. rapa was even greater than that between B. rapa and B. napus. The close relationships between Moricandia species and Brassica crops, especially European B. rapa, were also detected with 4 beta mitochondria probes. The intensive homology between Moricandia C3-C4 species and Brassica crops evaluated with the RFLP markers revealed the possibility of transferring some important genes from the C3-C4 species to the domesticated species by sexual hybridization or protoplast fusion followed by recombination of homoeologous chromosomes.  相似文献   

12.
I A Parkin  D J Lydiate 《Génome》1997,40(4):496-504
The patterns of chromosome pairing and recombination in two contrasting Brassica napus F1 hybrids were deduced. One hybrid was from a winter oilseed rape (WOSR) x spring oilseed rape cross, the other from a resynthesized B. napus x WOSR cross. Segregation at 211 equivalent loci assayed in the population derived from each hybrid produced two collinear genetic maps. Alignment of the maps indicated that B. napus chromosomes behaved reproducibly as 19 homologous pairs and that the 19 distinct chromosomes of B. napus each recombined with unique chromosomes from the interspecific hybrid between Brassica rapa and Brassica oleracea. This result indicated that the genomes of the diploid progenitors of amphidiploid B. napus have remained essentially unaltered since the formation of the species and that the progenitor genomes were similar to those of modern-day B. rapa and B. oleracea. The frequency and distribution of crossovers were almost indistinguishable in the two populations, suggesting that the recombination machinery of B. napus could cope easily with different degrees of genetic divergence between homologous chromosomes. Efficient recombination in wide crosses will facilitate the introgression of novel alleles into oilseed rape from B. rapa and B. oleracea (via resynthesized B. napus) and reduce linkage drag.  相似文献   

13.
We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.  相似文献   

14.
The cultivated Brassica species are the group of crops most closely related to Arabidopsis thaliana (Arabidopsis). They represent models for the application in crops of genomic information gained in Arabidopsis and provide an opportunity for the investigation of polyploid genome formation and evolution. The scientific literature contains contradictory evidence for the dynamics of the evolution of polyploid genomes. We aimed at overcoming the inherent complexity of Brassica genomes and clarify the effects of polyploidy on the evolution of genome microstructure in specific segments of the genome. To do this, we have constructed bacterial artificial chromosome (BAC) libraries from genomic DNA of B. rapa subspecies trilocularis (JBr) and B. napus var Tapidor (JBnB) to supplement an existing BAC library from B. oleracea. These allowed us to analyse both recent polyploidization (under 10,000 years in B. napus) and more ancient polyploidization events (ca. 20 Myr for B. rapa and B. oleracea relative to Arabidopsis), with an analysis of the events occurring on an intermediate time scale (over the ca. 4 Myr since the divergence of the B. rapa and B. oleracea lineages). Using the Arabidopsis genome sequence and clones from the JBr library, we have analysed aspects of gene conservation and microsynteny between six regions of the genome of B. rapa with the homoeologous regions of the genomes of B. oleracea and Arabidopsis. Extensive divergence of gene content was observed between the B. rapa paralogous segments and their homoeologous segments within the genome of Arabidopsis. A pattern of interspersed gene loss was identified that is similar, but not identical, to that observed in B. oleracea. The conserved genes show highly conserved collinearity with their orthologues across genomes, but a small number of species-specific rearrangements were identified. Thus the evolution of genome microstructure is an ongoing process. Brassica napus is a recently formed polyploid resulting from the hybridization of B. rapa (containing the Brassica A genome) and B. oleracea (containing the Brassica C genome). Using clones from the JBnB library, we have analysed the microstructure of the corresponding segments of the B. napus genome. The results show that there has been little or no change to the microstructure of the analysed segments of the Brassica A and C genomes as a consequence of the hybridization event forming natural B. napus. The observations indicate that, upon polyploid formation, these segments of the genome did not undergo a burst of evolution discernible at the scale of microstructure.  相似文献   

15.
M Fourmann  F Chariot  N Froger  R Delourme  D Brunel 《Génome》2001,44(6):1083-1099
Numerous sequences analogous to resistance (R) genes exist in plant genomes and could be involved in resistance traits. The aim of this study was to identify a large number of Brassica napus sequences related to R genes and also to test the adequacy of specific PCR-based tools for studying them. Different consensus primers were compared for their efficiency in amplifying resistance-gene analogues (RGAs) related to the nucleotide-binding-site subgroup of R genes. Specific primers were subsequently designed to fine-study the different RGAs and we tested their efficiency in three species related to B. napus: Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. Forty-four B. napus RGAs were identified. Among 29 examined, at least one-third were expressed. Eighteen RGAs were mapped on 10 of the 19 B. napus linkage groups. The high variability within these sequences permitted discrimination of each genotype within a B. napus collection. The RGA-specific primers amplified RGAs in the B. oleracea and B. rapa genomes, but the sequences appear to be poorly conserved in A. thaliana. Specific RGA primers are a precise tool for studying known-sequence RGAs. These sequences represent interesting markers that could be correlated with resistance traits in B. napus or related Brassica genomes.  相似文献   

16.
Phyllotreta cruciferae is an important insect pest of spring-planted Brassica crops, especially during the seedling stage. To determine the effect of early season P. cruciferae infestation on seed yield, 10 genotypes from each of two canola species (Brassica napus L. and Brassica rapa L.) and two mustard species (Brassica juncea L. and Sinapis alba L.) were grown in 2 yr under three different P. cruciferae treatments: (1) no insecticide control; (2) foliar applications of endosulfan; and (3) carbofuran with seed at planting plus foliar application of carbaryl. Averaged over 10 genotypes, B. rapa showed most visible P. cruciferae injury and showed greatest yield reduction without insecticide application. Mustard species (S. alba and B. juncea) showed least visible injury and higher yield without insecticide compared with canola species (B. napus and B. rapa). Indeed, average seed yield of S. alba without insecticide was higher than either B. napus or B. rapa with most effective P. cruciferae control. Significant variation occurred within each species. A number of lines from B. napus, B. juncea, anid S. alba showed less feeding injury and yield reduction as a result of P. cruciferae infestation compared with other lines from the same species examined, thus having potential genetic background for developing resistant cultivars.  相似文献   

17.
18.
Brassica carinata, an allotetraploid with B and C genomes, has a number of traits that would be valuable to introgress into B. napus. Interspecific hybrids were created between B. carinata (BBCC) and B. napus (AACC), using an advanced backcross approach to identify and introgress traits of agronomic interest from the B. carinata genome and to study the genetic changes that occur during the introgression process. We mapped the B and C genomes of B. carinata with SSR markers and observed their introgression into B. napus through a number of backcross generations, focusing on a BC(3) and BC(3)S(1) sibling family. There was close colinearity between the C genomes of B. carinata and B. napus and we provide evidence that B. carinata C chromosomes pair and recombine normally with those of B. napus, suggesting that similar to other Brassica allotetraploids no major chromosomal rearrangements have taken place since the formation of B. carinata. There was no evidence of introgression of the B chromosomes into the A or C chromosomes of B. napus; instead they were inherited as whole linkage groups with the occasional loss of terminal segments and several of the B-genome chromosomes were retained across generations. Several BC(3)S(1) families were analyzed using SSR markers, genomic in situ hybridization (GISH) assays, and chromosome counts to study the inheritance of the B-genome chromosome(s) and their association with morphological traits. Our work provides an analysis of the behavior of chromosomes in an interspecific cross and reinforces the challenges of introgressing novel traits into crop plants.  相似文献   

19.
Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.  相似文献   

20.
This study describes the use of regional association analyses to delineate a sequenced region of a Brassica napus chromosome with a significant effect on antinutritive seed meal compounds in oilseed rape. A major quantitative trait locus (QTL) influencing seed colour, fibre content, and phenolic compounds was mapped to the same position on B. napus chromosome A9 in biparental mapping populations from two different yellow-seeded × black-seeded B. napus crosses. Sequences of markers spanning the QTL region identified synteny to a sequence contig from the corresponding chromosome A9 in Brassica rapa. Remapping of sequence-derived markers originating from the B. rapa sequence contig confirmed their position within the QTL. One of these markers also mapped to a seed colour and fibre QTL on the same chromosome in a black-seeded × black-seeded B. napus cross. Consequently, regional association analysis was performed in a genetically diverse panel of dark-seeded, winter-type oilseed rape accessions. For this we used closely spaced simple sequence repeat (SSR) markers spanning the sequence contig covering the QTL region. Correction for population structure was performed using a set of genome-wide SSR markers. The identification of QTL-derived markers with significant associations to seed colour, fibre content, and phenolic compounds in the association panel enabled the identification of positional and functional candidate genes for B. napus seed meal quality within a small segment of the B. rapa genome sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号