首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

2.
基于模糊支持向量机的膜蛋白折叠类型预测   总被引:1,自引:0,他引:1  
现有的基于支持向量机(support vector machine,SVM)来预测膜蛋白折叠类型的方法.利用的蛋白质序列特征并不充分.并且在处理多类蛋白质分类问题时存在不可分区域,针对这两类问题.提取蛋白质序列的氨基酸和二肽组成特征,并计算加权的多阶氨基酸残基指数相关系数特征,将3类特征融和作为分类器的输入特征矢量.并采用模糊SVM(fuzzy SVM,FSVM)算法解决对传统SVM不可分数据的分类.在无冗余的数据集上测试结果显示.改进的特征提取方法在相同分类算法下预测性能优于已有的特征提取方法:FSVM在相同特征提取方法下性能优于传统的SVM.二者相结合的分类策略在独立性数据集测试下的预测精度达到96.6%.优于现有的多种预测方法.能够作为预测膜蛋白和其它蛋白质折叠类型的有效工具.  相似文献   

3.
利用分散量的数学理论,提出了基于最小分散增量的蛋白质序列辨识方法.通过多种特征联合对蛋白质序列进行编码,并建立基于最小分散增量的分类器MID_OMP,应用于革兰氏阴性细菌外膜蛋白序列辨识.在数据集上的Jackknife测试中,MID_OMP辨识外膜蛋白和α螺旋跨膜蛋白的准确率达到95.7%,辨识外膜蛋白和球状蛋白的准确率达到91.0%;在14个细菌基因组内挖掘结果显示,MID_OMP具有较高的敏感性和特异性,预测结果的可信度明显优于另外一种OMPs挖掘工具TMBETA-GENOME.  相似文献   

4.
氨基酸突变扫描实验揭示了在蛋白质相互作用的结合过程中大部分的结合自由能是由极少数热点残基贡献的,通常定义结合自由能变化△△G≥2.0 kcal/mol的蛋白质残基为热点残基。热点残基对蛋白质相互作用具有重要意义。因此,如何有效进行热点残基的预测,仍然是一个研究课题。综合蛋白质氨基酸理化属性的加权疏水性、加权残基接触数、结构属性溶剂可接近面积和残基突出指数等特征,提出利用机器学习支持向量机算法来预测热点残基的方法。所提方法在丙氨酸热力学数据库数据和结合界面数据库选定的数据集上有很好的效果。在一定程度上对以后的研究发展有所帮助。  相似文献   

5.
用离散量的方法识别蛋白质的超二级结构   总被引:1,自引:0,他引:1  
用离散量的方法,对2208个分辨率在2.5I以上的高精度的蛋白质结构中四类超二级结构进行了识别。从蛋白质一级序列出发,以氨基酸(20种氨基酸加一个空位)和其紧邻关联共同为参数,当序列模式固定长取8个氨基酸残基时,对“822”序列模式3交叉检验的平均预测精度达到78.1%,jack-knife检验的平均预测精度达到76.7%;当序列模式固定长取10个氨基酸残基时,对“1041”序列模式3交叉检验的平均预测精度达到83.1%,jack-knife检验的平均预测精度达到79.8%。  相似文献   

6.
李菁  王炜 《中国科学C辑》2006,36(6):552-562
序列比对是寻找蛋白质结构保守性区域的常用方法, 然而当序列相似小于30%时比对准确度却不高, 这是因为在这些序列中具有相似结构功能的不同残基在序列比对中往往被错误配对. 基于相似的物理化学性质, 某些残基可以被归类为一组, 而应用这些简化后的残基字符可以有效地简化蛋白质序列的复杂性并保持序列的主要信息. 因此, 如果20种天然氨基酸残基能够正确的归类, 可以有效地提高序列比对的准确度. 本文基于蛋白质结构比对数据库DAPS, 提出了一种新的氨基酸残基归类方法, 并可以同时得到不同简化程度下的替代矩阵用于序列比对. 归类的合理性由相互熵方法确认, 并且应用简化后的字符表于序列比对来识别蛋白质的结构保守区域. 结果表明, 当氨基酸残基字符简化到9个左右时能够有效地提高序列比对的准确度.  相似文献   

7.
血红素是一种重要的、常用的配体,在电子传递、催化、信号转导和基因表达等方面发挥着重要作用,准确预测蛋白质与血红素相互作用的结合残基是结构生物信息学的主要挑战之一。本文下载整理了Biolip数据库中HEME配体与蛋白质结合的信息,统计分析了结合残基和非结合残基的氨基酸组分和位点保守性信息并将其作为预测特征参数,用Fisher-PSSM判别法识别HEME结合残基,计算结果表明优化特征参数的Fisher-PSSM判别法得到了较好的预测结果。  相似文献   

8.
目的:基于支持向量机建立一个自动化识别新肽链四级结构的方法,提高现有方法的识别精度.方法:改进4种已有的蛋白质一级序列特征值提取方法,采用线性和非线性组合预测方法建立一个有效的组合预测模型.结果:以同源二聚体及非同源二聚体为例.对4种特征值提取方法进行改进后其分类精度均提升了2~3%;进一步实施线性与非线性组合预测后,其分类精度再次提高了2~3%,使独立测试集的分类精度达到了90%以上.结论:4种特征值提取方法均较好地反应出蛋白质一级序列包含四级结构信息,组合预测方法能有效地集多种特征值提取方法优势于一体.  相似文献   

9.
核酸序列中包含一定的蛋白质结构信息。根据通常情况下遗传密码表中密码子中间位的碱基配对时产生的氢键数目,尝试将20种氨基酸划分为两类,并用自编的计算机软件对蛋白质二级结构数据库中两类氨基酸的类聚现象进行了统计分析。结果表明,使用这种方法对氨基酸进行划分后,氨基酸残基具有较大概率与划入同一类的氨基酸残基相邻出现,并且这种聚集体对二级结构具有一定的偏好性。最后按照该方法设计了一段氨基酸序列并给出了预测服务器预测得到的结构。  相似文献   

10.
马鹏  王联结 《生物工程学报》2007,23(6):1082-1085
核酸序列中包含一定的蛋白质结构信息。根据通常情况下遗传密码表中密码子中间位的碱基配对时产生的氢键数目,尝试将20种氨基酸划分为两类,并用自编的计算机软件对蛋白质二级结构数据库中两类氨基酸的类聚现象进行了统计分析。结果表明,使用这种方法对氨基酸进行划分后,氨基酸残基具有较大概率与划入同一类的氨基酸残基相邻出现,并且这种聚集体对二级结构具有一定的偏好性。最后按照该方法设计了一段氨基酸序列并给出了预测服务器预测得到的结构。  相似文献   

11.
Discrimination of outer membrane proteins using support vector machines   总被引:3,自引:0,他引:3  
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for dissecting outer membrane proteins (OMPs) from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have developed a method based on support vector machines using amino acid composition and residue pair information. Our approach with amino acid composition has correctly predicted the OMPs with a cross-validated accuracy of 94% in a set of 208 proteins. Further, this method has successfully excluded 633 of 673 globular proteins and 191 of 206 alpha-helical membrane proteins. We obtained an overall accuracy of 92% for correctly picking up the OMPs from a dataset of 1087 proteins belonging to all different types of globular and membrane proteins. Furthermore, residue pair information improved the accuracy from 92 to 94%. This accuracy of discriminating OMPs is higher than that of other methods in the literature, which could be used for dissecting OMPs from genomic sequences. AVAILABILITY: Discrimination results are available at http://tmbeta-svm.cbrc.jp.  相似文献   

12.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important problem for predicting their secondary and tertiary structures and detecting outer membrane proteins from genomic sequences as well. In this work, we have systematically analyzed the distribution of amino acid residues in the sequences of globular and outer membrane proteins with several motifs, such as A*B, A**B, etc. We observed that the motifs E*L, A*K and L*E occur frequently in globular proteins while S*S, N*S and R*D predominantly occur in OMPs. We have devised a statistical method based on frequently occurring motifs in globular and OMPs and obtained an accuracy of 96% and 82% for correctly identifying OMPs and excluding globular proteins, respectively. Further, we noticed that the motifs of transmembrane helical (TMH) proteins are different from that of OMPs. While I*A, I*L and L*I prefer in TMH proteins S*S, N*S and N*N predominantly occur in OMPs. The information about the occurrence of A*B motifs in TMH and OMPs could discriminate them with an accuracy of 80% for excluding OMPs and 100% for identifying OMPs. The influence of protein size and structural class for discrimination is discussed.  相似文献   

13.
The outer membrane proteins (OMPs) are β-barrel membrane proteins that performed lots of biology functions. The discriminating OMPs from other non-OMPs is a very important task for understanding some biochemical process. In this study, a method that combines increment of diversity with modified Mahalanobis Discriminant, called IDQD, is presented to predict 208 OMPs, 206 transmembrane helical proteins (TMHPs) and 673 globular proteins (GPs) by using Chou's pseudo amino acid compositions as parameters. The overall accuracy of jackknife cross-validation is 93.2% and 96.1%, respectively, for three datasets (OMPs, TMHPs and GPs) and two datasets (OMPs and non-OMPs). These predicted results suggest that the method can be effectively applied to discriminate OMPs, TMHPs and GPs. And it also indicates that the pseudo amino acid composition can better reflect the core feature of membrane proteins than the classical amino acid composition.  相似文献   

14.
Outer membrane proteins (OMPs) play important roles in cell biology. In addition, OMPs are targeted by multiple drugs. The identification of OMPs from genomic sequences and successful prediction of their secondary and tertiary structures is a challenging task due to short membrane-spanning regions with high variation in properties. Therefore, an effective and accurate silico method for discrimination of OMPs from their primary sequences is needed. In this paper, we have analyzed the performance of various machine learning mechanisms for discriminating OMPs such as: Genetic Programming, K-nearest Neighbor, and Fuzzy K-nearest Neighbor (Fuzzy K-NN) in conjunction with discrete methods such as: Amino acid composition, Amphiphilic Pseudo amino acid composition, Split amino acid composition (SAAC), and hybrid versions of these methods. The performance of the classifiers is evaluated by two datasets using 5-fold crossvalidation. After the simulation, we have observed that Fuzzy K-NN using SAAC based-features makes it quite effective in discriminating OMPs. Fuzzy K-NN achieves the highest success rates of 99.00% accuracy for discriminating OMPs from non-OMPs and 98.77% and 98.28% accuracies from α-helix membrane and globular proteins, respectively on dataset1. While on dataset2, Fuzzy K-NN achieves 99.55%, 99.90%, and 99.81% accuracies for discriminating OMPs from non- OMPs, α-helix membrane, and globular proteins, respectively. It is observed that the classification performance of our proposed method is satisfactory and is better than the existing methods. Thus, it might be an effective tool for high throughput innovation of OMPs.  相似文献   

15.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the influence of physico-chemical, energetic and conformational properties of amino acid residues for discriminating outer membrane proteins using different machine learning algorithms, such as, Bayes rules, Logistic functions, Neural networks, Support vector machines, Decision trees, etc. We observed that most of the properties have discriminated the OMPs with similar accuracy. The neural network method with the property, free energy change could discriminate the OMPs from other folding types of globular and membrane proteins at the 5-fold cross-validation accuracy of 94.4% in a dataset of 1,088 proteins, which is better than that obtained with amino acid composition. The accuracy of discriminating globular proteins is 94.3% and that of transmembrane helical (TMH) proteins is 91.8%. Further, the neural network method is tested with globular proteins belonging to 30 major folding types and it could successfully exclude 99.4% of the considered 1612 non-redundant proteins. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

16.
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have systematically analyzed the amino acid composition of globular proteins from different structural classes and outer membrane proteins. We found that the residues, Glu, His, Ile, Cys, Gln, Asn and Ser, show a significant difference between globular and outer membrane proteins. Based on this information, we have devised a statistical method for discriminating outer membrane proteins from other globular and membrane proteins. Our approach correctly picked up the outer membrane proteins with an accuracy of 89% for the training set of 337 proteins. On the other hand, our method has correctly excluded the globular proteins at an accuracy of 79% in a non-redundant dataset of 674 proteins. Furthermore, the present method is able to correctly exclude alpha-helical membrane proteins up to an accuracy of 80%. These accuracy levels are comparable to other methods in the literature, and this is a simple method, which could be used for dissecting outer membrane proteins from genomic sequences. The influence of protein size, structural class and specific residues for discrimination is discussed.  相似文献   

17.
Integral membrane proteins are central to many cellular processes and constitute approximately 50% of potential targets for novel drugs. However, the number of outer membrane proteins (OMPs) present in the public structure database is very limited due to the difficulties in determining structure with experimental methods. Therefore, discriminating OMPs from non-OMPs with computational methods is of medical importance as well as genome sequencing necessity. In this study, some sequence-derived structural and physicochemical features of proteins were incorporated with amino acid composition to discriminate OMPs from non-OMPs using support vector machines. The discrimination performance of the proposed method is evaluated on a benchmark dataset of 208 OMPs, 673 globular proteins, and 206 α-helical membrane proteins. A high overall accuracy of 97.8% was observed in the 5-fold cross-validation test. In addition, the current method distinguished OMPs from globular proteins and α-helical membrane proteins with overall accuracies of 98.2 and 96.4%, respectively. The prediction performance is superior to the state-of-the-art methods in the literature. It is anticipated that the current method might be a powerful tool for the discrimination of OMPs.  相似文献   

18.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

19.
Liang GZ  Ma XY  Li YC  Lv FL  Yang L 《Bio Systems》2011,105(1):101-106
This article offers a novel sequence-based approach to discriminate outer membrane proteins (OMPs). The first step is to use a new representation approach, factor analysis scales of generalized amino acid information (FASGAI) representing hydrophobicity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility and electronic properties, etc., to characterize sequences of OMPs and non-OMPs. The subsequent data is then transformed into a uniform matrix by the auto cross covariance (ACC). The second step is to develop discrimination predictors of OMPs from non-OMPs using a support vector machine (SVM). The SVM predictors thus successfully produce a high Matthews correlation coefficient (MCC) of 0.916 on 208 OMPs from non-OMPs including 206 α-helical membrane proteins and 673 globular proteins by a fivefold cross validation test. Meanwhile, overall MCC values of 0.923 and 0.930 are obtained for the discrimination OMPs from the α-helical membrane proteins and the globular proteins, respectively. The results demonstrate that the FASGAI-ACC-SVM combination approach shows great prospect of application in the field of bioinformatics or proteomics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号