首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
重组工程及其应用   总被引:14,自引:1,他引:13  
周建光  洪鑫  黄翠芬 《遗传学报》2003,30(10):983-988
随着功能基因组研究的需要 ,新近建立起一项新型高效的基于体内同源重组的遗传工程技术———重组工程技术。重组工程可定义为 :基于噬菌体短同源序列重组功能的遗传工程 ,或者基于同源重组的遗传工程。λ噬菌体Red系统完全不同于传统的依赖RecA的大肠杆菌重组系统 ,特点是使用长度仅为 <5 0个碱基的同源臂高效率地催化体内同源重组反应。体内重组过程不再需要预先构建含有同源序列的质粒或噬菌体的中间产物 ,只需要简单在体外合成寡核苷酸同源序列 ,或者用PCR方法合成线性打靶序列。重组反应不依赖大肠杆菌RecA系统 ,不需要限制性内切核酸酶和连接酶 ,不需要复杂的体外重组操作 ,可在大肠杆菌体内对染色体DNA、对BAC和PAC质粒或普通质粒载体进行精确的修饰 ,包括真核或原核细胞基因组DNA的基因敲除、基因敲入、基因克隆和各种突变体的引入。由于该技术具有高效率、简单性和应用的广泛性等独特优点 ,将来完全有可能取代传统的遗传工程技术。主要介绍了λ噬菌体Red重组酶系统及重组工程在功能基因组研究方面的应用与进展  相似文献   

2.
近年来,合成生物学借助工程化在人工生命系统的设计与构建方面取得了长足进展,特别是“细胞工厂”的开发和应用为天然产物的合成带来了深刻变革。环脂肽是一类新型的天然表面活性剂,因其特殊的结构和功能亦可作为抗生素使用。目前,合成环脂肽最理想的微生物底盘是芽孢杆菌。因此,许多研究者致力于通过合成生物学技术来提升芽孢杆菌作为环脂肽细胞工厂的性能。首先,对芽孢杆菌中环脂肽的非核糖体肽合成途径进行概述;其次,重点介绍与环脂肽合成相关的调控因子;再次,从底盘细胞的选择、基因编辑工具的开发、合成路径的优化及发酵过程的优化等四个方面对合成生物学指导下环脂肽的相关研究进展进行总结;最后,讨论环脂肽合成中可能存在的挑战,并就未来研究趋势进行展望,以期为高效环脂肽细胞工厂的开发提供参考。  相似文献   

3.
全球数据量快速增长,成为数字经济发展的核心引擎,但传统数据存储介质受到功耗、体积、成本等限制,难以满足不断增长的数据存储需求。以脱氧核糖核酸(deoxyribonucleic acid,DNA)分子作为存储介质的新型存储方式引起了国内外高度重视,世界主要国家均对其研究进行了顶层规划,部署了一系列重要科研计划。但是,DNA数据存储作为一个新兴交叉研究领域,其发展的“源”与“流”仍存在需要深入分析的问题。针对该问题,从信息、半导体与合成生物学交叉融合的角度深入挖掘DNA数据存储发展的源头,对近年来国际上主要国家与地区在DNA数据存储领域的发展规划进行分析归纳,梳理国内外的科研项目规划布局,尤其是美国“半导体合成生物学联盟”推动的基础研究项目、美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)与美国情报高级研究计划局(Intelligence Advanced Research Projects Activity,IARPA)推动的面向应用的集中攻关项目、欧盟的地平线2020计划以及我国的重点研发计划等。通过比较可发现,美国主要采用政府部门主导、应用目标导向的研究模式,欧盟与我国在“十三五”期间及时跟进;我国在“十四五”期间设立了重点研发计划“生物与信息融合(BT与IT融合)”,致力于推动DNA数据存储等领域的发展,实现DNA数据存储发展带动生化仪器乃至生物经济、数字经济的发展。探索DNA数据存储发展的“源”和“流”,为从事该领域的研究者识别真正制约该领域发展的“真问题”提供参考,也为科技管理部门研判DNA数据存储的国际发展趋势提供参考。  相似文献   

4.
[目的]将T4噬菌体WG01宿主决定区的gp37基因片段,与另一株T4噬菌体QL01的相应基因进行同源重组,从而获得嵌合噬菌体并进行宿主谱分析,为阐明T4噬菌体的宿主谱形成机制以及快速筛选针对特定病原菌的噬菌体奠定了基础。[方法]通过同源重组的方法将WG01 gp37上的8个基因片段分别替换给QL01,用沙门氏菌作为宿主菌筛选嵌合噬菌体,并对嵌合噬菌体进行宿主谱、最佳感染复数、一步生长曲线和遗传稳定性测定。[结果]本研究共获得了5株嵌合噬菌体(QWA、QWC、QWF、QWG、QWFG)。宿主谱试验结果表明,与噬菌体QL01相比,嵌合噬菌体对21株沙门宿主菌分别可以多裂解7、8、4、10和9株菌,即嵌合噬菌体都获得了相对较宽的宿主谱,其中QWG的沙门氏菌宿主菌拓宽最多。生物学特性试验结果表明,嵌合噬菌体QWG生物学特性稳定。嵌合噬菌体QWG经连续传代培养20代,测序分析第1代和第20代嵌合噬菌体尾丝蛋白基因在传代过程中的稳定性,测序结果表明,嵌合噬菌体改造部分的基因能稳定遗传。[结论]用基因改造的方法可以产生宿主谱拓宽且能稳定遗传的嵌合噬菌体,为快速筛选针对特定病原菌的噬菌体提供了可能。  相似文献   

5.
噬菌体是微生物遗传学研究的有力工具及源泉.分枝杆菌噬菌体也是构建分枝杆菌,尤其是结核分枝杆菌遗传研究工具的基础.目前,基于分枝杆菌噬菌体重组酶的重组系统是国际热点.总结了近年来基于分枝杆菌噬菌体Che9c重组酶gp60、gp61所构建的分枝杆菌重组工程体系及其在分枝杆菌基因组研究方面的应用,并结合实验室工作展望了其研究前景.该体系不依赖细菌自身的RecA系统,不需要限制性内切核酸酶和DNA连接酶,不需要复杂的体外操作,只需表达分枝杆菌噬菌体重组酶,从而使结核分枝杆菌基因敲除、基因敲入及点突变和构建分枝杆菌噬菌体突变株更方便.这为分枝杆菌及其噬菌体基因诱变及基因功能研究提供了迅捷的新途径.  相似文献   

6.
基因打靶技术是微生物功能基因组学研究的有力工具之一,通过定向改变微生物的遗传信息可以对目的基因进行有效的功能分析。在大肠杆菌中研究较多的是转座子突变系统、RecBCD^-sbcB重组系统、RecA依赖的重组打靶系统、Chi位点刺激的重组、利用单链DNA进行的重组工程。在酵母中进行基因打靶的策略主要是转座子标记的突变、基于PCR方法的基因删除和转化相关重组。在其他微生物中主要应用转座子突变和自杀载体进行基因打靶。近年来,噬菌体重组系统的发展更使对微生物基因打靶系统的研究进入了新的阶段,主要包括Rac编码的RecET系统、Red重组系统和噬菌体退火蛋白介导的单链寡核苷酸重组系统。  相似文献   

7.
大肠杆菌重组工程   总被引:4,自引:0,他引:4  
源于噬菌体的大肠杆菌同源重组系统不需要限制性内切酶和DNA连接酶就可以进行DNA克隆和亚克隆,还能快速地改造质粒、细菌人工染色体及细菌基因组染色体,是基因工程技术的一大突破,被称为重组基因工程或重组工程。该技术操作简单,效率较高,可望为功能基因组学研究提供一个有力的工具。  相似文献   

8.
合成生物学是以工程化设计思路,构建标准化的元器件和模块,改造已存在的天然系统或者从头合成全新的人工生命体系。人们利用基因重组技术和基因定位编辑来实现对生命系统的特殊编程并执行特殊的功能;模块化处理代谢途径,优化元器件间的组合搭配,以最优的模式来实现化学品的合成。目前合成生物学已在能源、化工、医药等行业取得了重大进展,合成生物学将给人们的生活带来重大改变也将继续是科学家们研究和关注的热点。就目前合成生物学涉及的基因组编辑和模块化表达等关键技术及应用进行综述。  相似文献   

9.
Cre重组酶结构与功能的研究进展   总被引:1,自引:0,他引:1  
Cre/loxP定位重组系统来源于噬菌体P1,由Cre重组酶和loxP位点两部分组成。在Cre重组酶的介导下,设定的DNA片段可以被切除,可以发生倒位,亦可造成定点的整合。由于其作用方式高效简单,Cre/loxP定位重组系统已在特定基因的删除、基因功能的鉴定、外源基因的整合、基因捕获及染色体工程等方面得到了有效的利用,在转基因的酵母、植物、昆虫、哺乳动物的体内外DNA重组方面成为一个有力的工具。这里就Cre重组酶的结构、功能及该定位重组系统的应用等方面的研究进行了综述。  相似文献   

10.
合成生物学的发展使得人们可以根据需求对微生物进行改造,作为“工厂”高效地合成催化所需物质,并通过添加化学诱导物的方式对生命过程进行调控。然而,化学诱导的潜在毒性以及不可逆性等限制其应用。光遗传学技术利用特定波长的光信号实现对细胞生命过程的调控,具有特异性、可逆性、高时空分辨率等特点。近年来,人们对不同来源的光敏蛋白进行改造,开发出各种不同波长、不同效应的光遗传元件用于基因回路的构建,进而实现对细菌蛋白合成、代谢过程的调控。光遗传技术在人与细菌之间搭起了实时的信号沟通桥梁,实现更为精准的物质生产调控:(1)通过光控治疗因子的合成分泌进行药物递送;(2)通过代谢通路的控制提高目的产物的催化效率;(3)通过光诱导控制生物活材料的形成。随着探索的深入,更小体积、更多波长、更高效率的光遗传元件将被开发出来,实现多输入的细菌生命活动调控。  相似文献   

11.
Site-specific recombinases are important tools for genomic engineering in many living systems. Applications of recombinases are, however, constrained by the DNA targeting endemic of the recombinase used. A tremendous range of recombinase applications can be envisioned if the targeting of recombinase specificity can be made readily programmable. To address this problem we sought to generate zinc finger-recombinase fusion proteins (Rec(ZF)s) capable of site-specific function in a diversity of genetic contexts. Our first Rec(ZF), Tn3Ch15(X2), recombined substrates derived from the native Tn3 resolvase recombination site. Substrate Linked Protein Evolution (SLiPE) was used to optimize the catalytic domains of the enzymes Hin, Gin, and Tn3 for resolution between non-homologous sites. One of the evolved clones, GinL7C7, catalyzed efficient, site-specific recombination in a variety of sequence contexts. When introduced into human cells by retroviral transduction, GinL7C7 excised a 1.4 kb EGFP cassette out of the genome, diminishing fluorescence in approximately 17% of transduced cells. Following this template of rational design and directed evolution, Rec(ZF)s may eventually mediate gene therapies, facilitate the genetic manipulation of model organisms and cells, and mature into powerful new tools for molecular biology and medicine.  相似文献   

12.
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by sequence requirements imposed by the recombinase catalytic domain. Here, we combine substrate specificity analysis and directed evolution to develop a diverse collection of Gin recombinase catalytic domains capable of recognizing an estimated 3.77 × 107 unique DNA sequences. We show that ZFRs assembled from these engineered catalytic domains recombine user-defined DNA targets with high specificity, and that designed ZFRs integrate DNA into targeted endogenous loci in human cells. This study demonstrates the feasibility of generating customized ZFRs and the potential of ZFR technology for a diverse range of applications, including genome engineering, synthetic biology and gene therapy.  相似文献   

13.
Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses’ life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.  相似文献   

14.
Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL effector recombinases, in particular, are two classes of SSRs composed of custom-designed DNA-binding domains fused to a catalytic domain derived from the resolvase/invertase family of serine recombinases. While TAL effector and zinc-finger proteins can be assembled to recognize a wide range of possible DNA sequences, recombinase catalytic specificity has been constrained by inherent base requirements present within each enzyme. In order to further expand the targeted recombinase repertoire, we used a genetic screen to isolate enhanced mutants of the Bin and Tn21 recombinases that recognize target sites outside the scope of other engineered recombinases. We determined the specific base requirements for recombination by these enzymes and demonstrate their potential for genome engineering by selecting for variants capable of specifically recombining target sites present in the human CCR5 gene and the AAVS1 safe harbor locus. Taken together, these findings demonstrate that complementing functional characterization with protein engineering is a potentially powerful approach for generating recombinases with expanded targeting capabilities.  相似文献   

15.
16.
DNA site-specific recombinases (SSRs) such as Cre, FLPe, and phiC31, are powerful tools for analyzing gene function in vertebrates. While the availability of multiple high-efficiency SSRs would facilitate a wide array of genomic engineering possibilities, efficient recombination in mammalian cells has only been observed with Cre recombinase. Here we report the de novo synthesis of mouse codon-optimized FLP (FLPo) and PhiC31 (PhiC31o) SSRs, which result in recombination efficiencies similar to Cre.  相似文献   

17.
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.  相似文献   

18.
19.
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.  相似文献   

20.
The serine recombinases are a diverse family of modular enzymes that promote high-fidelity DNA rearrangements between specific target sites. Replacement of their native DNA-binding domains with custom-designed Cys2–His2 zinc-finger proteins results in the creation of engineered zinc-finger recombinases (ZFRs) capable of achieving targeted genetic modifications. The flexibility afforded by zinc-finger domains enables the design of hybrid recombinases that recognize a wide variety of potential target sites; however, this technology remains constrained by the strict recognition specificities imposed by the ZFR catalytic domains. In particular, the ability to fully reprogram serine recombinase catalytic specificity has been impeded by conserved base requirements within each recombinase target site and an incomplete understanding of the factors governing DNA recognition. Here we describe an approach to complement the targeting capacity of ZFRs. Using directed evolution, we isolated mutants of the β and Sin recombinases that specifically recognize target sites previously outside the scope of ZFRs. Additionally, we developed a genetic screen to determine the specific base requirements for site-specific recombination and showed that specificity profiling enables the discovery of unique genomic ZFR substrates. Finally, we conducted an extensive and family-wide mutational analysis of the serine recombinase DNA-binding arm region and uncovered a diverse network of residues that confer target specificity. These results demonstrate that the ZFR repertoire is extensible and highlights the potential of ZFRs as a class of flexible tools for targeted genome engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号