首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Iacob RE  Zhang J  Gray NS  Engen JR 《PloS one》2011,6(1):e15929
Abl kinase inhibitors targeting the ATP binding pocket are currently employed as potent anti-leukemogenic agents but drug resistance has become a significant clinical limitation. Recently, a compound that binds to the myristate pocket of Abl (GNF-5) was shown to act cooperatively with nilotinib, an ATP-competitive inhibitor to target the recalcitrant “T315I” gatekeeper mutant of Bcr-Abl. To uncover an explanation for how drug binding at a distance from the kinase active site could lead to inhibition and how inhibitors could combine their effects, hydrogen exchange mass spectrometry (HX MS) was employed to monitor conformational effects in the presence of both dasatinib, a clinically approved ATP-site inhibitor, and GNF-5. While dasatinib binding to wild type Abl clearly influenced Abl conformation, no binding was detected between dasatinib and T315I. GNF-5, however, elicited the same conformational changes in both wild type and T315I, including changes to dynamics within the ATP site located approximately 25 Å from the site of GNF-5 interaction. Simultaneous binding of dasatinib and GNF-5 to T315I caused conformational and/or dynamics changes in Abl such that effects of dasatinib on T315I were the same as when it bound to wild type Abl. These results provide strong biophysical evidence that allosteric interactions play a role in Abl kinase downregulation and that targeting sites outside the ATP binding site can provide an important pharmacological tool to overcome mutations that cause resistance to ATP-competitive inhibitors.  相似文献   

2.
Levinson NM  Boxer SG 《PloS one》2012,7(4):e29828
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor''s activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.  相似文献   

3.
As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1 > DDR-2 > BCR-Abl (Abl) > PDGFRα/β > KIT > CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38β) and MAPK12 (p38α), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.  相似文献   

4.
Six analogs of imatinib, an Abl kinase inhibitor clinically used as a first-line therapeutic agent for chronic myeloid leukaemia (CML), have been synthesized and characterized. And their potency as Abl kinase inhibitors have been screened by a robust virtual screening method developed based on the crystal structure (PDB code 2hyy) of Abl-imatinib complex using Surflex-Docking. The docking results are consistent with the inhibitory potency of the compounds characterized by MS method. And the H-bonds between imatinib analogs and Thr315 and Met318 residues in Abl kinase are shown to be crucial for achieving accurate poses and high binding affinities for the ATP-competitive kinase inhibitors.  相似文献   

5.
Allosteric kinase inhibitors hold promise for revealing unique features of kinases that may not be apparent using conventional ATP-competitive inhibitors. Here we explore the activity of a previously reported allosteric inhibitor of BCR-Abl kinase, GNF-2, against two cellular isoforms of Abl tyrosine kinase: one that carries a myristate in the N terminus and the other that is deficient in N-myristoylation. Our results show that GNF-2 inhibits the kinase activity of non-myristoylated c-Abl more potently than that of myristoylated c-Abl by binding to the myristate-binding pocket in the C-lobe of the kinase domain. Unexpectedly, indirect immunofluorescence reveals a translocation of myristoylated c-Abl to the endoplasmic reticulum in GNF-2-treated cells, whereas GNF-2 has no detectable effect on the localization of non-myristoylated c-Abl. These results indicate that GNF-2 competes with the NH2-terminal myristate for binding to the c-Abl kinase myristate-binding pocket and that the exposed myristoyl group accounts for the localization to the endoplasmic reticulum. We also demonstrate that GNF-2 can inhibit enzymatic and cellular kinase activity of Arg, a kinase highly homologous to c-Abl, which is also likely to be regulated through intramolecular binding of an NH2-terminal myristate lipid. These results suggest that non-ATP-competitive inhibitors, such as GNF-2, can serve as chemical tools that can discriminate between c-Abl isoform-specific behaviors.The catalytic activity of a protein kinase can be modulated by binding of a ligand to a site distant from the active site, also referred to as the allosteric site (1). The ligand is referred to as an allosteric kinase inhibitor and induces a protein conformation that is not compatible with kinase activity. Allosteric inhibitors can potentially be exploited to elucidate kinase functions not discovered using ATP-competitive inhibitors, because they can exploit binding sites and regulatory mechanisms that are unique to a particular kinase.The c-Abl and Arg (Abl-related gene) proteins comprise the Abl family of non-receptor tyrosine kinases. Each family member has two isoforms: one that is myristoylated in the N terminus (1b or IV) and the other that is deficient in N-myristoylation due to an alternative splicing of the first exon (1a or I) (Fig. 1A). N-Myristoylation often serves as a mechanism for targeting proteins to cellular membranes. However, Abl family members localize to multiple subcellular compartments; whereas Arg is mostly found in the cytoplasm, c-Abl shuttles between the nucleus and the cytoplasm, where it localizes to the cytosol, endoplasmic reticulum, and mitochondria (2).Open in a separate windowFIGURE 1.A, domain structure of Abl family members (5). The numbers indicate amino acid residues in c-Abl 1b, and the recombinant protein constructs used in this study encompass amino acids 65–534, 83–534, and 248–531. B, ribbon representation of the c-Abl kinase NH2-terminal half residues, including the SH3, SH2, and kinase domains (Protein Data Bank code 1OPK) (7). The NH2-terminal cap (amino acids 2–79) is indicated by dotted lines (8). The myristate-binding site and ATP binding pocket are indicated by arrows. C, ribbon representation of an enlarged view of GNF-2 (colored gold) bound to the c-Abl myristate binding site. The location of Ala356 is indicated.The Abl family members share a high degree of sequence identity (∼90%) in the NH2-terminal half residues, including the SH3,2 SH2, and kinase domains (3). The kinase domain is followed by proline-rich motifs that serve as binding sites for SH3 domains. A range of proteins are reported to bind directly or indirectly to the SH3, SH2, and proline-rich domains of c-Abl and are implicated in the proper regulation of the kinase activities of Abl family members in the cytoplasm (46). In addition, as revealed by recent crystallographic analyses of inactive and assembled form of recombinant Abl, the kinase activity of c-Abl is modulated by the intrinsic binding of the N-myristoyl residue to a hydrophobic pocket in the C-lobe of the kinase domain, which induces conformational changes in the kinase domain and subsequently allows the SH3 and SH2 domains to pack against the kinase domain (7, 8). Altogether, these observations suggest that the kinase activities of Abl family members in normal cells are tightly regulated by both intra- and intermolecular interactions (2, 9). Disruption of these strong regulatory mechanisms results in deregulated kinase activity, as illustrated by the BCR-Abl and v-Abl oncoproteins.Recent years have seen great advances in pharmacological inhibition of deregulated c-Abl kinase activity. Among the small molecule inhibitors targeting BCR-Abl kinase are imatinib (STI-571; Gleevec), nilotinib (AMN 107), and dasatinib (BMS-354825) (10). These small molecules have been used not only for clinical intervention in patients with leukemia but also as chemical tools to further dissect BCR-Abl kinase-linked signaling pathways in tissue culture cells (11). However, efforts to analyze the effects of monospecific inhibition of BCR-Abl kinase have been complicated by cross-reactivity of ATP-competitive Abl inhibitors with other kinases. For example, in addition to inhibiting c-Abl and BCR-Abl, STI-571 and nilotinib also potently inhibit c-Kit, platelet-derived growth factor receptor, and DDR1, whereas dasatinib potently inhibits all of these kinases as well as the Src family, Tec family, and KDR kinases (12). The multitargeted nature of these ATP-competitive inhibitors makes it difficult to assign a particular biological effect to inhibition of a specific kinase target.We previously reported the discovery of the first non-ATP site-monoselective BCR-Abl inhibitor (GNF-2), which targets not only wild type BCR-Abl but also many clinically relevant STI-571-resistant mutants either alone or in combination with other BCR-Abl inhibitors (13). Molecular modeling, site-directed mutagenesis, competition assays, NMR spectroscopy, and protein crystallography were used to determine that GNF-2 binds to a myristate-binding site in the C-lobe of the c-Abl kinase domain (Fig. 1, B and C) (3). The discovery of GNF-2 was the first demonstration that c-Abl kinase activity could be pharmacologically modulated by an inhibitor that binds outside the ATP or substrate binding sites. Although it remained unclear how GNF-2 is capable of inhibiting c-Abl upon binding to the myristate-binding site, we speculated that GNF-2 probably mimics the function of the N-myristoyl residue in c-Abl. Here, we investigated the effects of GNF-2 on Abl family members with the goals of providing further insights into the mechanism of GNF-2 function and laying the foundation to utilize GNF-2 as a tool to investigate c-Abl- and Arg-linked cellular processes.  相似文献   

6.
The tyrosine kinase Src and its close homolog Abl, both play important roles in chronic myelogenous leukemia (CML) progression and Imatinib resistance. No clinically approved inhibitors of the drug-resistant AblT315I exist to date. Here, we present a thorough kinetic analysis of two potent dual Src-Abl inhibitors towards wild type Src and Abl, and the AblT315I mutant. Our results show that the most potent compound BO1 shows only a modest loss of potency (fourfold) towards the AblT315I mutant in vitro and was an ATP-competitive inhibitor of wild type Abl but it acted as a non-competitive inhibitor in the case of AblT315I.  相似文献   

7.
Protein-based cellular therapeutics have been limited by getting molecules into cells and the fact that many proteins require accurate cellular localization for function. Cytoplasmic transduction peptide (CTP) is a newly designed transduction peptide that carries molecules across the cell membrane with a preference to localize in the cytoplasmic compartment and is, therefore, applicable for cytoplasmic targeting. The Bcr–Abl fusion protein, playing major causative role in chronic myeloid leukemia (CML), is a cytoplasmic oncoprotein that contains an N-terminus oligomerization domain (OD) mediating homodimerization of Bcr–Abl proteins, and an intact OD in Bcr–Abl is required both for the activation of its transforming activity and tyrosine kinase. Therefore, disrupting Bcr–Abl oligomerization represents a potential therapeutic strategy for inhibiting Bcr–Abl oncogenicity. In this study, we explored the possible homodimerization-disrupting and tyrosine kinase inhibiting effect of the transduction of OD in Bcr–Abl positive K562 cells. By expressing in Escherichia coli a CTP-OD-HA fusion protein followed by Ni+–NTA affinity purification, immunoblot identification and enterokinase cleavage, we showed that the CTP-OD-HA protein was structurally and functionally active in that it potently transduced and primarily localized into the cytoplasmic compartment, heterodimerized with Bcr–Abl, and potently inhibited the phospho-tyrosine pathways of Bcr–Abl oncoprotein at a low concentration of 4 μM. These results delineate strategies for the expression and purification of therapeutic molecules for intracytoplasmic protein based therapeutics and the CTP-OD-HA-mediated killing strategy could be explored as a promising anti-leukemia agent or an adjuvant to the conventional therapeutic modalities in chronic myeloid leukemia, such as in vitro purging.  相似文献   

8.
Conformational change is a common molecular mechanism for the regulation of kinase activities. Small molecule modulators of protein conformations, including allosteric kinase inhibitors, are highly wanted as tools for the interrogation of kinase biology and as selective therapeutic agents. However, straightforward cellular assays monitoring kinase conformations in a manner conducive to high-throughput screening (HTS) are not readily available. Here we describe such an HTS-compatible conformational sensor assay for Abl based on a split luciferase construct. The Abl sensor responds to intramolecular structural rearrangements associated with intracellular Abl deactivation and small molecule inhibition. The intact regulatory CAP-SH3-SH2 domain is required for the full functionality of the sensor. Moreover, a T334I Abl mutant (T315I in Abl1a) was found to be particularly well suited for HTS purposes and mechanistic intracellular studies of T334I mutant inhibitors. We expect that the split luciferase-based conformational sensor approach might be more broadly useful to probe the intracellular activation of other kinases and enzymes in general.  相似文献   

9.
BackgroundAbl1 is a protein tyrosine kinase whose aberrant activation due to mutations is the culprit of several cancers, most notably chronic myeloid leukaemia. Several Abl1 inhibitors are used as anti-cancer drugs. Unfortunately, drug resistance limits their effectiveness. The main cause for drug resistance is mutations in the kinase domain (KD) of Abl1 that evolve in patients. The T315I mutation confers resistance against all clinically-available inhibitors except ponatinib. Resistance to ponatinib can develop by compound (double) mutations.MethodsKinetic measurements of the KD of Abl1 and its mutants were carried out to examine their catalytic activity. Specifically, mutants that lead to drug resistance against ponatinib were considered. Molecular dynamics simulations and multiple sequence analysis were used for explanation of the experimental findings.ResultsThe catalytic efficiency of the T315I pan-resistance mutant is more than two times lower than that of the native KD. All ponatinib resistant mutations restore the catalytic efficiency of the enzyme. Two of them (G250E/T315I and Y253H/E255V) have a catalytic efficiency that is more than five times that of the native KD.ConclusionsThe measurements and analysis suggest that resistance is at least partially due to the development of a highly efficient kinase through subsequent mutations. The simulations highlight modifications in two structurally important regions of Abl1, the activation and phosphate binding loops, upon mutations.General significanceExperimental and computational methods were used together to explain how mutations in the kinase domain of Abl1 lead to resistance against the most advanced drug currently in use to treat chronic myeloid leukaemia.  相似文献   

10.
BCR-ABL kinase domain inhibition can be used to treat chronic myeloid leukemia. The inhibitors such as imatinib, dasatinib and nilotinib are effective drugs but are resistant to some BCR-ABL mutations. The pan-BCR-ABL kinase inhibitor ponatinib exhibits potent activity against native, T315I, and all other clinically relevant mutants, and showed better inhibition than the previously known inhibitors. We have studied the molecular dynamics simulations and calculated solvated interaction energies of native and fourteen mutant BCR-ABL kinases (M244V, G250E, Q252H, Y253F, Y253H, E255K, E255V, T315A, T315I, F317L, F317V, M351T, F359V and H396P) complexed with ponatinib. These studies revealed that the interactions between ponatinib and individual residues in BCR-ABL kinase are also affected due to the remote residue mutations. We report that some residues, Met244, Lys245, Gln252, Gly254, Leu370 and Leu298 do not undergo any conformational changes, while the fluctuations in residues from P-loop, β3-, β5- strands and αC- helix are mainly responsible for ponatinib binding to native and all mutant BCR-ABL kinases. Our work provides the molecular mechanisms of native and mutant BCR-ABL kinases inhibition by ponatinib at atomic level that has not been studied before.  相似文献   

11.
A series of 2,4-disubstituted thiazole derivatives were designed and synthesized as new Bcr/Abl inhibitors by hybriding the structural moieties from FDA approved imatinib, nilotinib and dasatinib. The new inhibitors strongly suppressed the activity of Bcr/Abl kinase and potently inhibited the proliferation of K562 and KU812 leukemia cancer cells. Compound 4i displayed comparable potency with that of nilotinib in both biochemical kinase assay and cancer cell growth inhibition assay. These inhibitors might serve as lead compounds for further developing new anticancer drugs.  相似文献   

12.
Imatinib is an ATP-competitive inhibitor of Bcr-Abl kinase and the first drug approved for chronic myelogenous leukemia (CML) treatment. Here we show that imatinib binds to a secondary, allosteric site located in the myristoyl pocket of Abl to function as an activator of the kinase activity. Abl transitions between an assembled, inhibited state and an extended, activated state. The equilibrium is regulated by the conformation of the αΙ helix, which is located nearby the allosteric pocket. Imatinib binding to the allosteric pocket elicits an αΙ helix conformation that is not compatible with the assembled state, thereby promoting the extended state and stimulating the kinase activity. Although in wild-type Abl the catalytic pocket has a much higher affinity for imatinib than the allosteric pocket does, the two binding affinities are comparable in Abl variants carrying imatinib-resistant mutations in the catalytic site. A previously isolated imatinib-resistant mutation in patients appears to be mediating its function by increasing the affinity of imatinib for the allosteric pocket, providing a hitherto unknown mechanism of drug resistance. Our results highlight the benefit of combining imatinib with allosteric inhibitors to maximize their inhibitory effect on Bcr-Abl.  相似文献   

13.
Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.  相似文献   

14.
Bcr‐Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr‐Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr‐Abl activity, which led to the recent development of ABL‐001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL‐001 induced a ‘bent’ conformation in the C‐terminal helix of Bcr‐Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr‐Abl by dual targeting. Our findings revealed that unlike in the Bcr‐Abl‐Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C‐terminal helix that varied with time. This was coupled with significant alteration in Bcr‐Abl stability, flexibility, and compactness and an overall structural re‐orientation inwards towards the hydrophobic core, which reduced the solvent‐exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer.  相似文献   

15.
Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl, the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency, M351T and H396P were less potent, and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity, whereas the kinase activity of E255K, H396P, and T315I did not correlate with transforming capabilities, suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants, a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion, leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors.  相似文献   

16.
Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal. Here, we address this issue in plants via a pharmacogenetic screen for mutants resistant to the ATP-competitive TOR inhibitor AZD-8055. The eukaryotic TOR (Target of Rapamycin) kinase is emerging as a major hub controlling growth responses in plants largely thanks to the use of ATP-competitive inhibitors. We identified a dominant mutation in the DFG motif of the Arabidopsis TOR kinase domain that leads to very strong resistance to AZD-8055. This resistance was characterized by measuring root growth, photosystem II (PSII) activity in leaves and phosphorylation of YAK1 (Yet Another Kinase 1) and RPS6 (Ribosomal protein S6), a direct and an indirect target of TOR respectively. Using other ATP-competitive TOR inhibitors, we also show that the dominant mutation is particularly efficient for resistance to drugs structurally related to AZD-8055. Altogether, this proof-of-concept study demonstrates that a pharmacogenetic screen in Arabidopsis can be used to successfully identify the target of a kinase inhibitor in vivo and therefore to demonstrate inhibitor specificity. Thanks to the conservation of kinase families in eukaryotes, and the possibility of creating amino acid substitutions by genome editing, this work has great potential for extending studies on the evolution of signaling pathways in eukaryotes.  相似文献   

17.
Novel therapies are urgently needed to prevent and treat tyrosine kinase inhibitor resistance in chronic myeloid leukaemia (CML). MLN8237 is a novel Aurora A kinase inhibitor under investigation in multiple phase I and II studies. Here we report that MLN8237 possessed equipotent activity against Ba/F3 cells and primary CML cells expressing unmutated and mutated forms of breakpoint cluster region-Abelson kinase (BCR-ABL). Notably, this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to standard therapy. MLN8237 treatment disrupted cell cycle kinetics, induced apoptosis, caused a dose-dependent reduction in the expression of the large inhibitor of apoptosis protein Apollon, and produced a morphological phenotype consistent with Aurora A kinase inhibition. In contrast to other Aurora kinase inhibitors, MLN8237 did not significantly affect BCR-ABL activity. Moreover, inhibition of Aurora A with MLN8237 significantly increased the in vitro and in vivo efficacy of nilotinib. Targeted knockdown of Apollon sensitized CML cells to nilotinib-induced apoptosis, indicating that this is an important factor underlying MLN8237's ability to increase the efficacy of nilotinib. Our collective data demonstrate that this combination strategy represents a novel therapeutic approach for refractory CML that has the potential to suppress the emergence of T315I mutated CML clones.  相似文献   

18.
BCR-ABL 是一种由bcr 基因和c-abl 原癌基因融合产生的致癌基因。该基因表达的Bcr–Abl 癌蛋白是慢性粒细胞白血病的病理学基础。因此研发选择性的Bcr–Abl 酪氨酸激酶抑制剂成为治疗慢性粒细胞白血病的一种有效策略。目前已有数个Bcr–Abl 酪氨酸激酶抑制剂获准上市。然而,Abl 激酶结构域的突变或其他原因导致肿瘤耐药性的出现,其中T315I 突变是最重要的突变之一,引发的耐药性更是难以克服。重点介绍了针对T315I 突变的Bcr–Abl 酪氨酸激酶抑制剂的研究进展。  相似文献   

19.
The nonreceptor Abl tyrosine kinase stimulates F-actin microspikes and membrane ruffles in response to adhesion and growth factor signals. We show here that induced dimerization of Abl-FKBP, but not the kinase-defective AblKD-FKBP, inhibits cell spreading on fibronectin. Conversely, knockdown of cellular Abl by shRNA stimulates cell spreading. The Abl kinase inhibitor, imatinib, also stimulates cell spreading and its effect is overridden by the imatinib-resistant AblT315I. Expression of Abl but not AbkKD in Abl/Arg-deficient cells again inhibits spreading. Furthermore, Abl inhibits spreading of cells that express the activated Rac, RacV12, correlating with RacV12 localization to dorsal membrane protrusions. Ectopic expression of CrkII, a Rac activator that is inactivated by Abl-mediated tyrosine phosphorylation, antagonizes Abl-mediated dorsal membrane localization of RacV12. Ectopic expression of a dynamin-2 mutant, previously shown to induce Rac-GTP localization to the dorsal membrane, abolishes the stimulatory effect of imatinib on cell spreading. These results suggest that Abl tyrosine kinase, through CrkII phosphorylation and in collaboration with dynamin-2 can regulate the partitioning of Rac-GTP to favor dorsal ruffles during cell spreading. The Abl-dependent dorsal membrane localization of activated Rac explains its positive role in ruffling and negative role in cell spreading and migration.  相似文献   

20.
We describe the design, synthesis and structure-activity relationship studies in optimizing a series of benzotriazine compounds as potent inhibitors of both Abl and Abl-T315I enzymes. The design includes targeting of an acid functional residue on the alphaC-helix that is available only upon kinase activation. This designed interaction provides an advantage in overcoming the challenges arising from the T315I mutation of Abl and transforms poor (ca. 10 microM) inhibitors into those with low nM potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号