首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.  相似文献   

3.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

4.
5.
Translational repression of male-specific-lethal 2 (msl-2) mRNA by Sex-lethal (SXL) is an essential regulatory step of X chromosome dosage compensation in Drosophila. Translation inhibition requires that SXL recruits the protein upstream of N-ras (UNR) to the 3' UTR of msl-2 mRNA. UNR is a conserved, ubiquitous protein that contains five cold-shock domains (CSDs). Here, we dissect the domains of UNR required for translational repression and complex formation with SXL and msl-2 mRNA. Using gel-mobility shift assays, the domain involved in interactions with SXL and msl-2 was mapped specifically to the first CSD (CSD1). Indeed, excess of a peptide containing this domain derepressed msl-2 translation in vitro. The CSD1 of human UNR can also form a complex with SXL and msl-2. Comparative analyses of the CSDs of the Drosophila and human proteins together with site-directed mutagenesis experiments revealed that three exposed residues within CSD1 are required for complex formation. Tethering assays showed that CSD1 is not sufficient for translational repression, indicating that UNR binding to SXL and msl-2 can be distinguished from translation inhibition. Repression by tethered UNR requires residues from both the amino-terminal Q-rich stretch and the two first CSDs, indicating that the translational effector domain of UNR resides within the first 397 amino acids of the protein. Our results identify domains and residues required for UNR function in translational control.  相似文献   

6.
7.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

8.
Among the four cold shock domain proteins (CSDPs) identified in Arabidopsis thaliana, it has recently been shown that CSDP1 harboring seven CCHC-type zinc fingers, but not CSDP2 harboring two CCHC-type zinc fingers, function as a RNA chaperone during cold adaptation. However, the structural features relevant to this differing RNA chaperone activity between CSDP1 and CSDP2 remain largely unknown. To determine which structural features are necessary for the RNA chaperone activity of the CSDPs, the importance of the N-terminal cold shock domain (CSD) and the C-terminal zinc finger glycine-rich domains of CSDP1 and CSDP2 were assessed. The results of sequence motif-swapping and deletion experiments showed that, although the CSD itself harbored RNA chaperone activity, the number and length of the zinc finger glycine-rich domains of CSDPs were crucial to the full activity of the RNA chaperones. The C-terminal domain itself of CSDP1, harboring seven CCHC-type zinc fingers, also has RNA chaperone activity. The RNA chaperone activity and nuclei acid-binding property of the native and chimeric proteins were closely correlated with each other. Collectively, these results indicate that a specific modular arrangement of the CSD and the zinc finger domain determines both the RNA chaperone activity and nucleic acid-binding property of CSDPs; this, in turn, contributes to enhanced cold tolerance in plants as well as in bacteria.  相似文献   

9.
The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.  相似文献   

10.
The Gag protein of human foamy virus (HFV) lacks Cys-His boxes present in the nucleocapsid (NC) domains of other retroviruses; instead it contains three glycine-arginine-rich motifs (GR boxes). We have expressed the carboxyl end of HFV Gag containing the GR boxes (the NC domain equivalent) and analyzed its nucleic acid binding properties. Our results show that the NC domain of HFV Gag binds with high affinity to both RNA and DNA, in a sequence-independent manner, as determined by filter binding assays. Analysis of a mutant containing a heterologous sequence in place of GR box I indicates that this motif is required for nucleic acid binding and for viral replication. A mutant in GR box II still binds to RNA and DNA in vitro, but virus containing this mutation does not replicate and no nuclear staining of the Gag protein is found in transfected cells. Surprisingly, a revertant from this mutant that completely lacks GR box II and exhibits very little nuclear transport of Gag can readily replicate in tissue culture. This finding thus provides a direct evidence that although the sequences in GR box II can serve as a nuclear transport signal, they are not required for HFV replication and it is unlikely that nuclear localization of Gag protein plays any critical role during viral infection. Taken together, our results suggest that the Gag protein of HFV may be more analogous to the core protein of the hepatitis B virus family than to conventional retroviral Gag protein.  相似文献   

11.
The cold shock domain (CSD) is an evolutionarily conserved nucleic acid binding domain that exhibits binding activity to RNA, ssDNA, and dsDNA. Mammalian CRHSP-24 contains CSD, but its structure-functional relationship has remained elusive. Here we report the crystal structure of human CRHSP-24 and characterization of the molecular trafficking of CRHSP-24 between stress granules and processing bodies in response to oxidative stress. The structure of CRHSP-24 determined by single-wavelength anomalous dispersion exhibits an α-helix and a compact β-barrel formed by five curved anti-parallel β strands. Ligand binding activity of the CSD is orchestrated by residues Ser(41) to Leu(43). Interestingly, a phosphomimetic S41D mutant abolishes the ssDNA binding in vitro and causes CRHSP-24 liberated from stress granules in vivo without apparent alternation of its localization to the processing bodies. This new class of phosphorylation-regulated interaction between the CSD and nucleic acids is unique in stress granule plasticity. Importantly, the association of CRHSP-24 with stress granules is blocked by PP4/PP2A inhibitor calyculin A as PP2A catalyzes the dephosphorylation of Ser(41) of CRHSP-24. Therefore, we speculate that CRHSP-24 participates in oxidative stress response via a dynamic and temporal association between stress granules and processing bodies.  相似文献   

12.
The RNA-binding protein Lin28 regulates the processing of a developmentally important group of microRNAs, the let-7 family. Lin28 blocks the biogenesis of let-7 in embryonic stem cells and thereby prevents differentiation. It was shown that both RNA-binding domains (RBDs) of this protein, the cold-shock domain (CSD) and the zinc-knuckle domain (ZKD) are indispensable for pri- or pre-let-7 binding and blocking its maturation. Here, we systematically examined the nucleic acid-binding preferences of the Lin28 RBDs and determined the crystal structure of the Lin28 CSD in the absence and presence of nucleic acids. Both RNA-binding domains bind to single-stranded nucleic acids with the ZKD mediating specific binding to a conserved GGAG motif and the CSD showing only limited sequence specificity. However, only the isolated Lin28 CSD, but not the ZKD, can bind with a reasonable affinity to pre-let-7 and thus is able to remodel the terminal loop of pre-let-7 including the Dicer cleavage site. Further mutagenesis studies reveal that the Lin28 CSD induces a conformational change in the terminal loop of pre-let-7 and thereby facilitates a subsequent specific binding of the Lin28 ZKD to the conserved GGAG motif.  相似文献   

13.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

14.
15.
Y-box-binding protein 1 (YB-1), a cold shock domain protein, is one of the most conserved nucleic acid-binding proteins. The multifunctional human YB-1 is a member of a large family of proteins with an evolutionary ancient cold shock domain. The presence of a cold shock domain is a specific feature of Y-box-binding proteins and allows attributing them to a wider group of proteins containing a cold shock domain. This protein is involved in a number of cellular processes including proliferation, differentiation and stress response. The YB-1 performs its function both in the cytoplasm and in the cell nucleus. In this study, we present the structure of full-length human YB-1 protein along with investigation of their nucleic acid-binding preferential. The study also focuses on biases for particular purine and pyrimidine bases. The overall goal of this study was to model and validate full-length YB-1 protein and to compare its nucleic acid-binding studies with previous reports.  相似文献   

16.
Divergent evolution can explain how many proteins containing structurally similar domains, which perform a variety of related functions, have evolved from a relatively small number of modules or protein domains. However, it cannot explain how protein domains with similar, but distinguishable, functions and similar, but distinguishable, structures have evolved. Examples of this are the RNA-binding proteins containing the RNA-binding domain (RBD), and a newly established protein group, the cold-shock domain (CSD) protein family. Both protein domains contain conserved RNP motifs on similar single-stranded nucleic acid-binding surfaces. Apart from the RNP motifs, which have a similar function, the two families show little similarity in topology or amino acid sequence. This can be considered an interesting example of convergent evolution at the molecular level. Previously, a β-sheet surface was found to interact with RNA in non-homologous proteins from yeast, phage and man, revealing that this mode of RNA binding may be a widely recurring theme.  相似文献   

17.
The double-stranded RNA-binding motif (dsRBM) is a widely distributed motif frequently found within proteins with sequence non-specific RNA duplex-binding activity. In addition to the binding of double-stranded RNA, some dsRBMs also participate in complex formation via protein–protein interactions. Interestingly, a lot of proteins containing multiple dsRBMs have only some of their dsRBMs with the expected RNA duplex-binding competency proven, while the functions of the other dsRBMs remain unknown. We show here that the dsRBM1 of RNA helicase A (RHA) can cooperate with a C-terminal domain of proline-rich content to gain novel nucleic acid-binding activities. This integrated nucleic acid-binding module is capable of associating with the consensus sequences of the constitutive transport element (CTE) RNA of type D retrovirus against RNA duplex competitors. Remarkably, binding activity for double-stranded DNA corresponding to the consensus sequences of the cyclic-AMP responsive element also resides within this composite nucleic acid binder. It thus suggests that the dsRBM fold can be used as a platform for the building of a ligand binding module capable of non-RNA macromolecule binding with an accessory sequence, and functional assessment for a newly identified protein containing dsRBM fold should be more cautious.  相似文献   

18.
We have identified a new variant surface glycoprotein expression site-associated gene (ESAG) in Trypanosoma brucei, the trypanosome leucine repeat (T-LR) gene. Like most other ESAGs, it is expressed in a life cycle stage-specific manner. The N-terminal 20% of the predicted T-LR protein resembles the metal-binding domains of nucleic acid-binding proteins. The remainder is composed of leucine-rich repeats that are characteristic of protein-binding domains found in a variety of other eucaryote proteins. This is the first report of leucine-rich repeats and potential nucleic acid-binding domains on the same protein. The T-LR gene is adjacent to ESAG 4, which has homology to the catalytic domain of adenylate cyclase. This is intriguing, since yeast adenylate cyclase has a leucine-rich repeat regulatory domain. The leucine-rich repeat and putative metal-binding domains suggest a possible regulatory role that may involve adenylate cyclase activity or nucleic acid binding.  相似文献   

19.
冷激蛋白是存在于细菌、植物与动物中的一类高度保守的核酸结合蛋白,其通过RNA分子伴侣活性参与转录、翻译及生长发育和逆境胁迫应答等细胞生理活动。本文主要从植物冷激蛋白的结构、表达模式、生物学功能以及应用前景等几个方面介绍了植物冷激蛋白的研究进展。  相似文献   

20.
To study the function(s) of the Rous sarcoma virus nucleic acid-binding protein p12, we constructed mutants by using two restriction sites in the p12 proviral coding sequence of the Prague C strain to insert KpnI synthetic linkers. The two restriction sites are in the same reading frame, which allowed us to construct a deletion mutant lacking the two conserved Cys-His regions and a duplication mutant containing three intact Cys-His boxes. These mutant DNAs were transfected into chicken embryo fibroblasts, and the viral particles produced in a transient assay were characterized biochemically and for infectivity. Our results indicate that the Rous sarcoma virus nucleic acid-binding protein p12 is necessary for genomic RNA packaging but not for particle assembly and is implicated in the formation of a stable 70S dimeric RNA. Moreover, the fact that one mutant was apparently able to package normal 70S RNA but was not infectious suggests a role for p12 during the infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号