首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the Thermus aquaticus DnaB helicase monomer   总被引:1,自引:1,他引:0  
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9Å resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.  相似文献   

2.
Biswas T  Tsodikov OV 《The FEBS journal》2008,275(12):3064-3071
Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 A resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.  相似文献   

3.
The helicase loader protein DnaI (the Bacillus subtilis homologue of Escherichia coli DnaC) is required to load the hexameric helicase DnaC (the B. subtilis homologue of E. coli DnaB) onto DNA at the start of replication. While the C-terminal domain of DnaI belongs to the structurally well-characterized AAA+ family of ATPases, the structure of the N-terminal domain, DnaI-N, has no homology to a known structure. Three-dimensional structure determination by nuclear magnetic resonance (NMR) spectroscopy shows that DnaI presents a novel fold containing a structurally important zinc ion. Surface plasmon resonance experiments indicate that DnaI-N is largely responsible for binding of DnaI to the hexameric helicase from B. stearothermophilus, which is a close homologue of the corresponding much less stable B. subtilis helicase.  相似文献   

4.
During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks.  相似文献   

5.
DnaB is the primary replicative helicase in Escherichia coli and the hexameric DnaB ring has previously been shown to exist in two states in the presence of nucleotides. In one, all subunits are equivalent, while in the other, there are two different subunit conformations resulting in a trimer of dimers. Under all conditions that we have used for electron microscopy, including the absence of nucleotide, some rings exist as trimers of dimers, showing that the symmetry of the DnaB hexamer can be broken prior to nucleotide binding. Three-dimensional reconstructions reveal that the N-terminal domain of DnaB makes two very different contacts with neighboring subunits in the trimer of dimers, but does not form a predicted dimer with a neighboring N-terminal domain. Within the trimer of dimers, the helicase domain exists in two alternate conformations, each of which can form symmetrical hexamers depending upon the nucleotide cofactor used. These results provide new information about the modular architecture and domain dynamics of helicases, and suggest, by comparison with the hexameric bacteriophage T7 gp4 and SV40 large T-antigen helicases, that a great structural and mechanistic diversity may exist among the hexameric helicases.  相似文献   

6.
Loading of the ring-shaped replicative helicase is a critical step in the initiation of DNA replication. Bacillus subtilis has adopted a two-protein strategy to load its hexameric replicative helicase: DnaB and DnaI interact with the helicase and mediate its delivery onto DNA. We present here the 3D electron microscopy structure of the DnaB protein, along with a detailed analysis of both its oligomeric state and its domain organization. DnaB is organized as an asymmetric tetramer that is comprised of two stacked components, one arranged as a closed collar and the other as an open sigma shape. Intriguingly, the 3D map of DnaB exhibits an overall architecture similar to the structure of the Escherichia coli gamma-complex, the loader of the ring-shaped processivity factor. We propose a model whereby each DnaB monomer participates in both stacked components of the tetramer and displays a different overall shape. This asymmetric quaternary organization could be a general feature of ring loaders.  相似文献   

7.
DnaB is a ring-shaped, hexameric helicase that unwinds the E. coli DNA replication fork while encircling one DNA strand. This report demonstrates that DnaB can also encircle both DNA strands and then actively translocate along the duplex. With two strands positioned inside its central channel, DnaB translocates with sufficient force to displace proteins tightly bound to DNA with no resultant DNA unwinding. Thus, DnaB may clear proteins from chromosomal DNA. Furthermore, while encircling two DNA strands, DnaB can drive branch migration of a synthetic Holliday junction with heterologous duplex arms, suggesting that DnaB may be directly involved in DNA recombination in vivo. DnaB binds to just one DNA strand during branch migration. T7 phage gp4 protein also drives DNA branch migration, suggesting this activity generalizes to other ring-shaped helicases.  相似文献   

8.
BACKGROUND: DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C6 or C3 symmetry, indicating large domain movements and reversible pairwise association. RESULTS: The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer-dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C2 symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data. CONCLUSIONS: The monomer-dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C6 and C3 symmetry of the helicase hexamer.  相似文献   

9.
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.  相似文献   

10.
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.  相似文献   

11.
The initiation of chromosome replication in Escherichia coli requires the recruitment of the replicative helicase DnaB from the DnaBC complex to the unwound region within the replication origin oriC, supported by the oriC-bound initiator protein DnaA. We defined physical contacts between DnaA and DnaB that involve residues 24-86 and 130-148 of DnaA and residues 154-210 and 1-156 of DnaB respectively. We propose that contacts between DnaA and DnaB occur via two interaction sites on each of the proteins. Interaction domain 24-86 of DnaA overlaps with its N-terminal homo-oligomerization domain (residues 1-86). Interaction domain 154-210 of DnaB overlaps or is contiguous with the domains known to interact with plasmid initiator proteins. Loading of the DnaBC helicase in vivo can only be performed by DnaA derivatives containing (in addition to residues 24-86 and the DNA-binding domain 4) a structurally intact domain 3. Nucleotide binding by domain 3 is, however, not required. The parts of DnaA required for replication of pSC101 were clearly different from those used for helicase loading. Domains 1 and 4 of DnaA, but not domain 3, were found to be involved in the maintenance of plasmid pSC101.  相似文献   

12.
Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Å resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.  相似文献   

13.
We have probed the structure of the human mitochondrial DNA helicase, an enzyme that uses the energy of nucleotide hydrolysis to unwind duplex DNA during mitochondrial DNA replication. This novel helicase shares substantial amino acid sequence and functional similarities with the bacteriophage T7 primase-helicase. We show in velocity sedimentation and gel filtration analyses that the mitochondrial DNA helicase exists as a hexamer. Limited proteolysis by trypsin results in the production of several stable fragments, and N-terminal sequencing reveals distinct N and C-terminal polypeptides that represent minimal structural domains. Physical analysis of the proteolytic products defines the region required to maintain oligomeric structure to reside within amino acid residues approximately 405-590. Truncations of the N and C termini affect differentially DNA-dependent ATPase activity, and whereas a C-terminal domain polypeptide is functional, an N-terminal domain polypeptide lacks ATPase activity. Sequence similarity and secondary structural alignments combined with biochemical data suggest that amino acid residue R609 serves as the putative arginine finger that is essential for ATPase activity in ring helicases. The hexameric conformation and modular architecture revealed in our study document that the mitochondrial DNA helicase and bacteriophage T7 primase-helicase share physical features. Our findings place the mitochondrial DNA helicase firmly in the DnaB-like family of replicative DNA helicases.  相似文献   

14.
DnaA forms a homomultimeric complex with the origin of chromosomal replication (oriC) to unwind duplex DNA. The interaction of the DnaA N terminus with the DnaB helicase is crucial for the loading of DnaB onto the unwound region. Here, we determined the DnaA N terminus structure using NMR. This region (residues 1-108) consists of a rigid region (domain I) and a flexible region (domain II). Domain I has an alpha-alpha-beta-beta-alpha-beta motif, similar to that of the K homology (KH) domain, and has weak affinity for oriC single-stranded DNA, consistent with KH domain function. A hydrophobic surface carrying Trp-6 most likely forms the interface for domain I dimerization. Glu-21 is located on the opposite surface of domain I from the Trp-6 site and is crucial for DnaB helicase loading. These findings suggest a model for DnaA homomultimer formation and DnaB helicase loading on oriC.  相似文献   

15.
Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function.  相似文献   

16.
The gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain is responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding whereas the N-terminal primase domain is responsible for template-directed oligoribonucleotide synthesis. A 26 amino acid linker region (residues 246-271) connects the two domains and is essential for the formation of functional hexamers. In order to further dissect the role of the linker region, three residues (Ala257, Pro259, and Asp263) that was disordered in the crystal structure of the hexameric helicase fragment were substituted with all amino acids, and the altered proteins were analyzed for their ability to support growth of T7 phage lacking gene 4. The in vivo screening revealed Ala257 and Asp263 to be essential whereas Pro259 could be replaced with any amino acid without loss of function. Selected gene 4 proteins with substitution for Ala257 or Asp263 were purified and examined for their ability to unwind DNA, hydrolyze dTTP, translocate on ssDNA, and oligomerize. In the presence of Mg2+, all of the altered proteins oligomerize. However, in the absence of divalent ion, alterations at position 257 increase the extent of oligomerization whereas those at position 263 reduce oligomer formation. Although dTTP hydrolysis activity is reduced only 2-3-fold, none of the altered gene 4 proteins can translocate effectively on single-strand DNA, and they cannot mediate the unwinding of duplex DNA. Primer synthesis catalyzed by the altered proteins is relatively normal on a short DNA template but it is severely impaired on longer templates where translocation is required. The results suggest that the linker region not only connects the two domains of the gene 4 protein and participates in oligomerization, but also contributes to helicase activity by mediating conformations within the functional hexamer.  相似文献   

17.
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.  相似文献   

18.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   

19.
Replicative helicases are essential ATPases that unwind DNA to initiate chromosomal replication. While bacterial replicative DnaB helicases are hexameric, Helicobacter pylori DnaB (HpDnaB) was found to form double hexamers, similar to some archaeal and eukaryotic replicative helicases. Here we present a structural and functional analysis of HpDnaB protein during primosome formation. The crystal structure of the HpDnaB at 6.7 Å resolution reveals a dodecameric organization consisting of two hexamers assembled via their N-terminal rings in a stack-twisted mode. Using fluorescence anisotropy we show that HpDnaB dodecamer interacts with single-stranded DNA in the presence of ATP but has a low DNA unwinding activity. Multi-angle light scattering and small angle X-ray scattering demonstrate that interaction with the DnaG primase helicase-binding domain dissociates the helicase dodecamer into single ringed primosomes. Functional assays on the proteins and associated complexes indicate that these single ringed primosomes are the most active form of the helicase for ATP hydrolysis, DNA binding and unwinding. These findings shed light onto an activation mechanism of HpDnaB by the primase that might be relevant in other bacteria and possibly other organisms exploiting dodecameric helicases for DNA replication.  相似文献   

20.
Flowers S  Biswas EE  Biswas SB 《Biochemistry》2003,42(7):1910-1921
DnaB helicase of E. coli unwinds duplex DNA in the replication fork using the energy of ATP hydrolysis. We have analyzed structural and conformational changes in the DnaB protein in various nucleotides and DNA bound intermediate states by fluorescence quenching analysis of intrinsic fluorescence of native tryptophan (Trp) residues in DnaB. Fluorescence quenching analysis indicated that Trp48 in domain alpha is in a hydrophobic environment and resistant to fluorescence quenchers such as potassium iodide (KI). In domain beta, Trp294 was found to be in a partially hydrophobic environment, whereas Trp456 in domain gamma appeared to be in the least hydrophobic environment. Binding of oligonucleotides to DnaB helicase resulted in a significant attenuation of the fluorescence quenching profile, indicating a change in conformation. ATPgammaS or ATP binding appeared to lead to a conformation in which Trp residues had a higher degree of solvent exposure and fluorescence quenching. However, the most dramatic increase of Trp fluorescence quenching was observed with ADP binding with a possible conformational relaxation. Site-specific Trp --> Cys mutants of DnaB helicase demonstrated that conformational change upon ADP binding could be attributed exclusively to a conformational transition in the alpha domain leading to an increase in the solvent exposure of Trp48. However, formation of DnaB.ATPgammaS.DNA ternary complex led to a conformation with a fluorescence quenching profile similar to that observed with DnaB alone. The DnaB.ADP.DNA ternary complex produced a quenching curve similar to that of DnaB.ADP complex pointing to a change in conformation due to ATP hydrolysis. There are at least four identifiable structural/conformational states of DnaB helicase that are likely important in the helicase activity. The noncatalytic alpha domain in the N-terminus appeared to undergo the most significant conformational changes during nucleotide binding and hydrolysis. This is the first reported elucidation of the putative role of domain alpha, which is essential for DNA helicase action. We have correlated these results with partial structural models of alpha, beta, and gamma domains  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号