首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to better understand the pituitary regulation of follicular growth in the domestic cat, follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors (R) were localized and quantified in relation to follicle diameter and atresia using in situ ligand binding on ovarian sections. Expression of FSHR was homogeneous and restricted to follicle granulosa cells from the early antral stage onwards, whereas expression of LHR was heterogeneous on theca cells of all follicles from the early antral stage onward, and homogeneous on granulosa cells of healthy follicles larger than 800 microm in diameter and in corpora lutea. LHR were also widely expressed as heterogeneous aggregates in the ovarian interstitial tissue. Atretic follicles exhibited significantly reduced levels of both FSHR and LHR on granulosa cells, compared with healthy follicles whatever the follicular diameter, whereas levels of LHR on theca cells were lower only for atretic follicles larger than 1,600 microm in diameter. In healthy follicles, levels of FSHR and LHR in all follicular compartments increased significantly with diameter. Although generally comparable to that observed in other mammals, the expression pattern of gonadotropin receptors in the cat ovary is characterized by an early acquisition of LHR on granulosa cells of growing follicles and islets of LH binding sites in the ovarian interstitial tissue.  相似文献   

2.
3.
In cattle, most evidence suggests that granulosa cells express LH receptors (LHR) after (or as) the follicle becomes dominant, however there is some suggestion that granulosa cells from smaller pre-dominant follicles may express several LHR mRNA splice variants. The objective of this study was to measure LHR expression in bovine follicles of defined size and steroidogenic ability, and in granulosa cells from small follicles (<6 mm diameter) undergoing differentiation in vitro. Semiquantitative RT-PCR demonstrated that LHR mRNA was undetectable in granulosa cells of follicles <7 mm diameter (nondominant follicles), and increased with follicle diameter in follicles >7 mm diameter. Splice variants with deletions of exon 10 and part of exon 11 were detected as previously described, and we detected a novel splice variant with a deletion of exon 3. Cultured granulosa cells contained LHR mRNA, but with significantly greater amounts of variants with deletions of exon 10 and/or exon 11 compared with cells from dominant follicles. FSH increased the abundance of some but not all LHR mRNA splice variants in cultured granulosa cells. The addition of LH to cultured cells did not increase progesterone secretion, despite the presence of LHR mRNA. Collectively, these data suggest that granulosa cells do not acquire functional LHR until follicle dominance occurs.  相似文献   

4.
Growth rates of follicles in the ovary of the cow   总被引:4,自引:0,他引:4  
Follicular growth rates were studied in 5 Hereford-Holstein cross heifers on Day 14 of the oestrous cycle. The granulosa cell mitotic index (MI) was measured in non-atretic antral follicles of various diameters (0.13-8.57 mm) from Bouin-fixed ovaries collected before (199, control) and 2 h after colchicine treatment (189, treated). In control ovaries, follicles of 0.68-1.52 mm had a higher MI than those of other size classes (P less than 0.05). In colchicine-treated ovaries, the MI of follicles ranging from 0.68 to 8.57 mm increased more than that of other sized follicles, so that the mitotic time was shorter (0.78 h vs 1.32 h) in medium and large sized follicles (0.68-8.57 mm) than in smaller follicles (0.13-0.67 mm). Calculations based on the number of granulosa cells in follicles of various classes and from the time required to double the number of cells within a follicle indicate that a follicle takes 27 days to grow from 0.13 to 0.67 mm, 6.8 days from 0.68 to 3.67 mm and 7.8 days from 3.68 to 8.56 mm, indicating that growth rates varied with the size of the follicle. A period equivalent to 2 oestrous cycles would therefore be required for a follicle to grow through the antral phase, i.e. from 0.13 mm to preovulatory size. Increased MI, decreased mitotic time and increased atresia found in follicles larger than 0.68 mm could indicate a change in the follicular metabolism during its maturation.  相似文献   

5.
The common marmoset (Callithrix jacchus) belongs to the family Callitrichidae, the only anthropoid primates with a high and variable number of ovulations (one to four). An understanding of folliculogenesis in this species may provide some insight into factors regulating multiple follicular growth in primates. The aims of this study were to characterize in detail changes in the antral follicle population at different stages of the ovarian cycle, to characterize the marmoset FSH profile, and to relate cyclic changes in FSH to changes in follicle sizes and circulating estradiol concentrations. Fifty-five pairs of ovaries were collected (32 of which were at five distinct stages of the cycle) from adult marmosets, and antral follicles were manually excised and separated into four size groups. Daily urinary FSH and plasma estradiol and progesterone concentrations from Day 0 of the follicular phase to 2 days postovulation were measured in 22 marmosets using enzyme immunoassays. The FSH profile revealed two distinct peaks, on Days 2 and 6, during the 10-day follicular phase, with a marginal periovulatory increase on Days 9 and 10. Estradiol levels rose significantly (P: < 0.05) above baseline (Days 1-4) on Day 5 and continuously increased to a peak on the day preceding ovulation (Days 8 and 9). Follicle dissection revealed a high (mean = 68) and variable (range, 14-158) total number of antral follicles >0.6 mm. The number of antral follicles significantly declined (P: < 0.001) with age. The number of preovulatory follicles (>2 mm) was positively correlated with the number of antral follicles (P: < 0. 001) and tended to be negatively related to age (P: = 0.06). The number of antral follicles did not vary significantly with stage of the ovarian cycle, although the follicle size distribution was cycle-stage dependent (P: < 0.05). Follicles >1.0 mm appeared only in the follicular phase, and preovulatory follicles (>2.0 mm) appeared only at the end of the follicular phase (Days 7-9). The Day 2 FSH peak corresponded to emergence of a population of medium-size antral follicles, and the Day 6 peak was consistent with rising estradiol levels and appearance of the preovulatory follicles. These results suggest that some aspects of marmoset folliculogenesis are comparable to those in Old World primates, including the absence of multiple follicular waves and the appearance of an identifiable dominant follicle in the midfollicular phase. However, the midphase FSH peak, multiple dominant follicles, and abundance of nonovulatory antral follicles differ strongly from the pattern in Old World primates and humans. The findings are discussed in relation to the regulation of growth of multiple ovulatory follicles and provide the basis for further studies on factors influencing the dynamics of follicular growth and development in this species.  相似文献   

6.
Spatiotemporal expression, endocrine regulation, and activation of epidermal growth factor receptor (EGFR) in the hamster ovary were evaluated by immunofluorescence and in situ hybridization localization. Whereas granulosa cells (GC) of primordial through large preantral (stage 6, 7-8 layers GC) follicles had low immunoreactivity, granulosa cells of antral follicles, theca, and interstitial cells had intense EGFR immunoreactivity. EGFR expression in GC of primordial and small preantral follicles increased progressively from estrous through proestrous, but a significant increase occurred in mural GC of antral follicles following the gonadotropin surge. Interstitial cells around small preantral follicles had strong immunofluorescence, and the intensity increased significantly in fully differentiated thecal cells. Distinct EGFR protein was localized in the nucleus of the oocytes and granulosa cells. FSH significantly stimulated EGFR expression in the GC, especially the mural GC, theca, and interstitial cells in hypophysectomized hamster. Estrogen stimulated EGFR expression in preantral GC as well as in interstitial cells. Progesterone and hCG effect was limited to theca and interstitial cells. EGFR expression correlated well with EGFR activation following endogenous or exogenous gonadotropin exposure. Receptor mRNA expression closely followed the protein expression, with increased mRNA expression in mural GC of antral follicles. These results suggest that low levels of EGF signal as a consequence of low levels of receptors in preantral GC may be critical for cell proliferation, but higher receptor density may evoke increased signal intensity due to activation of other intracellular signal pathways, which activate cellular processes related to granulosa, theca, and interstitial cell differentiation. The spatiotemporal cell type and follicle stage-specific expression of receptor mRNA and protein and EGFR activation is critically regulated by gonadotropins and ovarian steroids, primarily estradiol.  相似文献   

7.
Interactions between theca and granulosa cells of the follicle are critical for the coordination of ovarian follicle development. The cell–cell interactions are mediated through the local production and actions of a variety of factors. The current study is designed to investigate the expression of Hgf and its receptor, c‐Met, in the mouse ovary during in vivo folliculogenesis. We found that Hgf and c‐Met mRNAs were already expressed in 2‐day‐old ovaries, and that, while c‐Met levels remained constant until 22‐day‐old, Hgf levels slightly but not significantly increased with age. The expression of Hgf mRNA in theca/interstitial cells was higher than in granulosa cells in 22‐day‐old ovaries. Immunohistochemistry analysis confirmed the expression pattern demonstrated by RT‐PCR. We investigated the role of hepatocyte growth factor (HGF) at the beginning of mouse folliculogenesis and its possible interaction with kit ligand (KL). Interestingly, both KL and HGF were able to increase the expression of each other, creating a positive feedback loop. In the presence of HGF, we observed an increase of granulosa cell proliferation and an increase in the number of pre‐antral and early antral follicles in ovary organ cultures. We also observed a significant increase in the diameters of follicles in individual follicle cultures. Moreover, HGF stimulated the expression of the FSH receptors, both in the whole ovary and in isolated pre‐antral follicle cultures. Based on the data presented, we concluded that HGF exerts multiple levels of control over follicular cell functions, which collectively enable the progression of follicular development. J. Cell. Physiol. 226: 520–529, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Manipulation of circulating concentrations of hormones and ovarian follicle status was carried out on Day 11-12 of the oestrous cycle in sheep. All follicles visible on the ovary were ablated by cautery and ewes were treated with oestradiol or ovine follicular fluid (oFF) to suppress FSH or with PMSG to increase circulating gonadotrophic activity. One group underwent unilateral ovariectomy which greatly increased endogenous FSH and was the only treatment which significantly affected LH pulse frequency. The size distribution of antral follicles, the extent of atresia and the mitotic index of granulosa cells of follicles on Day 15 showed that (a) treatment with oFF inhibited the growth of follicles beyond 2 mm diameter by suppressing the mitotic index of the granulosa cells and (b) the concentration of FSH in peripheral plasma was related to the ability of small antral follicles to grow during the late luteal-early follicular phase of the cycle. Subsequently, it was demonstrated that oFF inhibits, in a dose-dependent manner, folliculogenesis sustained by PMSG in ewes on Days 12-15. Inhibition of folliculogenesis was represented by a decrease in those follicles greater than 4 mm, an increase in the relative proportion of follicles less than 2 mm, and minimal change in the average number of follicles visible on the ovarian surface, and a decrease in the mitotic index of granulosa cells of follicles less than 2 mm. There was no change in the extent of atresia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The glycoside residues (glycoconjugates, GC) of the zona pellucida (ZP) glycoproteins are important during the first phases of fecundation. Our aim in this work was to determine the lectin affinity pattern of porcine ZP in order to analyze the changes that take place during: (a) preantral folliculogenesis, (b) the follicular atresia process, and (c) antral growth. Several prepubertal and adult pig ovaries and different sized antral follicles were used. Conventional carbohydrate histochemical techniques and peroxidase and digoxigenin (DIG) lectins were used to reveal the acid groups and the glycosidic residues of the ZP. It was seen that the ZP forms in the preantral follicles throughout their growth period. In primordial and primary follicles, ZP in the process of formation showed neutral GC. SBA, RCA-I, MAA, WGA lectins, and AAA after methylation-saponification (MS) were positive in the ZP of primordial and primary follicles. The affinity for SBA, RCA-I, MAA, and WGA increased in the multilaminar-primary follicles and new affinities for UEA-I and LFA were observed. After MS, AAA, SNA, PNA, and SBA reactivity was observed. The ZP of antral follicle oocytes of different sizes showed the same lectin pattern as multilaminar-primary follicles. The oocyte ooplasm and the follicular fluid of large antral follicles showed less affinity for WGA and LFA lectins and less intensive staining with AB (pH 2.5). Atresia did not change the antral or preantral follicle oocyte ZP lectin pattern. In conclusion, the follicles showed substantial changes in their ZP glycosidic composition as they developed, especially, during the change from primary to multilaminar-primary follicles. The ZP glycosidic composition showed no significant change during the growth of antral follicles and follicular atresia in our study.  相似文献   

10.
Expression of mRNAs for IGF-I, IGF-binding protein-2 (IGFBP-2), and LH receptor (LHR) as well as their regulations during induced follicular atresia was determined. 26-day-old female rats received 15 IU pregnant mare serum gonadotropins (PMSG). Through detection, it was demonstrated that apoptosis occurred in some small antral follicles after 48 h of PMSG treatment. At 96 h, apoptosis occurred in preovulatory follicles. At 120 h, numerous apoptotic cells appeared in preovulatory follicles. IGF-I was mainly expressed in preantral and small antral follicles from 48 to 120 h. At 48 and 96 h, the theca cells of preantral and antral follicles expressed high level of IGFBP-2 mRNA. At 48 h, there were strong signals of LHR mRNA in granulosa cells, but the LHR signals in granulosa cells significantly decreased at 96 and 120 h (p<0.001). Both epidermal growth factor (EGF) and IGF-I inhibited apoptosis in preantral and antral follicles. Meanwhile, it was observed that EGF promoted IGF-I mRNA expression, and in preovulatory follicles, IGF-I stimulated LHR mRNA expression. These results show that the interaction between ECF and IGF-I may be involved in the regulation of atresia of follicles at different stages of development.  相似文献   

11.
12.
Expression of mRNAs for IGF-I, IGF-binding protein-2 (IGFBP-2), and LH receptor (LHR) as well as their regulations during induced follicular atresia was determined. 26-day-old female rats received 15 IU pregnant mare serum gonadotropins (PMSG). Through detection, it was demonstrated that apoptosis occurred in some small antral follicles after 48 h of PMSG treatment. At 96 h, apoptosis occurred in preovulatory follicles. At 120 h, numerous apoptotic cells appeared in preovulatory follicles. IGF-I was mainly expressed in preantral and small antral follicles from 48 to 120 h. At 48 and 96 h, the theca cells of preantral and antral follicles expressed high level of IGFBP-2 mRNA. At 48 h, there were strong signals of LHR mRNA in granulosa cells, but the LHR signals in granulosa cells significantly decreased at 96 and 120 h (p<0.001). Both epidermal growth factor (EGF) and IGF-I inhibited apoptosis in preantral and antral follicles. Meanwhile, it was observed that EGF promoted IGF-I mRNA expression, and in pr  相似文献   

13.
14.
15.
16.
This study was designed to develop preantral follicle isolation and classification protocols for the domestic dog as a model for endangered canids. Ovary donors were grouped by age, size, breed purity, ovary weight and ovary status. Ovaries were randomly assigned to 1 of 3 digestion protocols: A) digestion and follicle isolation on the day of spaying; B) storage at 4 degrees C for 18 to 24 h prior to digestion and follicle isolation; C) digestion on the day of spaying, then incubation at 4 degrees C for 18 h prior to follicle isolation. Minced tissue was placed in a collagenase/DNase solution at 37 degrees C for 1 h. Follicles were classified by oocyte size and opaqueness and by size and appearance of the granulosa cell layers. Preantral follicles contained small, pale oocytes. Preantral follicles containing grown oocytes with dense cytoplasmic lipid were designated as advanced preantral. Only advanced preantral and early antral follicles were examined and classified further. Group 1 follicles had incomplete or absent granulosa layers, Group 2 follicles had several intact granulosa layers, while Group 3 were vesicular (early antral) follicles. Misshapen or pale grown oocytes were classified as degenerated. The percentage of intact germinal vesicles (GV) was recorded for each Group. Digestion Protocol B produced the lowest percentage of degenerated follicles (P < 0.01). Prepubertal donors had fewer (P < 0.01) follicles in each Group and more (P < 0.001) degenerated follicles than older bitches. Larger ovaries yielded the highest total number of follicles (P < 0.05). Ovary status did not affect follicle yield. Oocytes from Group 1 follicles had fewer intact GVs than those from Group 2 or Group 3 (P < 0.0001). These findings provide an opportunity for quantitative studies of the factors regulating folliculogenesis in the domestic dog as a model for endangered canids.  相似文献   

17.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFbeta type II receptor (TGFbeta RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFbeta ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFbeta superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.  相似文献   

18.
To date, ultrasonography of monkey ovaries is rare and typically of low resolution. The objectives of this study were to use state‐of‐the‐art, high‐resolution, transabdominal ultrasonography with real‐time Doppler capabilities to: (1) determine whether one can reliably detect in real time the large dominant follicle, the corpus luteum (CL), and small (<2 mm) antral follicles on the ovaries of rhesus monkeys during the natural menstrual cycle; and (2) predict the follicular response of rhesus ovaries to controlled ovarian stimulation (COS) protocols. Rhesus monkeys were selected for transabdominal ultrasonography using a GE Voluson 730 Expert Doppler System at discrete stages of the menstrual cycle. Subsequently, serial ultrasound scanning was employed to observe growth of antral follicles and the CL. Finally, females were scanned to assess follicular growth during COS. The dominant structure and small antral follicles (<2 mm) were reliably visualized in real time. The follicle destined to ovulate could be identified by size differential by day 3 of the follicular phase. The number of small antral follicles present before onset of COS protocol correlated positively with the number of metaphase II‐stage oocytes collected after treatment. The results of this study demonstrate that the population dynamics of antral follicle pools can be noninvasively evaluated in monkeys during natural and pharmacologic ovarian cycles. Am. J. Primatol. 71:384–392, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The number of antral follicles counted (AFC) by ultrasound is associated with fertility in cattle. Cows with higher follicle count (HFC) have higher performance in reproductive‐assisted technologies than cows with lower follicle count (LFC). In this study, we aimed to define the preantral follicle count by histology and to identify differentially expressed genes (DEGs) using a microarray in Nelore and Angus heifers with HFC and LFC. The ovaries of each animal were scanned with an ultrasound device 12 to 24 hr after estrus. The groups were formed based on the average number of total follicles (≥3 mm) counted in each breed consistently ± the standard deviation. For the histological analysis, preantral follicles were counted and classified under a stereo microscope, and follicle density was determined. Microarray analysis was performed on pools of three follicles dissected from the ovaries of 15 Nelore (6 HFC and 9 LFC) and 17 Angus heifers (9 HFC and 8 LFC). Angus heifers have increased total and primordial follicle density. Nelore heifers have increased antral follicle count. Different patterns of gene expression regulate follicle recruitment and development in Angus and Nelore heifers and may be associated with the different follicle densities observed in Angus versus Nelore heifers. Furthermore, HFC heifers presented increased expression of genes associated with cellular development and metabolism.  相似文献   

20.
It is considered a dogma that a secretory peak of LH is indispensable as the trigger of ovulation. However, earlier studies on hypophysectomized rodents have shown that stimulation with recombinant FSH, devoid of any LH activity, is able to boost the final stages of follicular maturation and trigger ovulation. As the expression of ovarian LH receptors (LHRs) still persists after hypophysectomy, such studies cannot totally exclude the possibility that LHR activation is involved in the apparently pure FSH effects. To revisit this question, we analyzed in LHR knockout (LuRKO) mice the progression of folliculogenesis and induction of ovulation by human chorionic gonadotropin and human recombinant FSH treatments. The results provide clear evidence that follicular development and ovulation could not be induced by high doses of FSH in the absence of LHR expression. Ovarian histology and oocyte analyses indicated that follicular maturation did not advance in LuRKO mice beyond the antral follicle stage. Neither were ovulations detected in LuRKO ovaries after any of the gonadotropin treatments. The ovarian resistance to FSH treatment in the absence of LHR was confirmed by real-time RT-PCR and immunohistochemical analyses of a number of gonadotropin-dependent genes, which only responded to the treatments in wild-type control mice. Negative findings were not altered by estradiol priming preceding the gonadotropin stimulations. Hence, the present study shows that, in addition to ovulation, the expression of LHR is essential for follicular maturation in the progression from antral to preovulatory stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号