首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed which illustrate the various ways EDTA can influence lipid peroxidation. Either detergent-dispersed linoleate, or liposomes made from extracted microsomal phospholipids were utilized as substrates for peroxidation. Peroxidation was accomplished using Fe2+ or Fe3+. In systems utilizing Fe2+, EDTA chelation facilitated Fe2+ autoxidation which in turn caused peroxidation of detergent-dispersed linoleate. Peroxidation was not initiated during EDTA-Fe2+ autoxidation when the substrate lipids were in a liposomal configuration. Systems utilizing Fe3+ required an enzyme (either xanthine oxidase or NADPH-cytochrome P450 reductase) to reduce the iron for peroxidative activity. EDTA chelation of Fe3+ enhanced the xanthine oxidase and NADPH-cytochrome P450 reductase-catalyzed peroxidation of detergent-dispersed linoleate, presumably by facilitating the reduction of Fe3+. Catalase and mannitol inhibited both EDTA-Fe2+- and EDTA-Fe3+-dependent lipid peroxidation. EDTA-Fe3+ was not capable of initiating peroxidation of phospholipid liposomes following enzymatic reduction by either enzyme, but ADP-chelated iron effectively initiated liposomal peroxidation in similar systems. With xanthine oxidase-catalyzed peroxidation of liposomes with ADP-Fe3+, the inclusion of EDTA-Fe3+ caused a modest enhancement of activity. EDTA-Fe3+ greatly stimulated NADPH-cytochrome P450 reductase-catalyzed peroxidation of liposomes with ADP-Fe3+. In contrast, the addition of EDTA, rather than EDTA-Fe3+ inhibited the liposomal peroxidation catalyzed by either enzyme with ADP-Fe3+ when the EDTA concentration exceeded the concentration of Fe3+.  相似文献   

2.
We investigated the effects of an OH (Fe2+/H2O2) generator system of erythrocyte membrane, particularly the time-course of lipid peroxidation as estimated by measurement of conjugated dienes, thiobarbituric reactive substances (TBARS), lipofuscin-like pigments, and α-tocopherol. Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (20∶4 ω 6) and docosahexenoic acid (22∶6 ω 3), were also measured. Erythrocyte membranes were suspended in phosphate buffer containing Fe2+ (200 μM) and H2O2 (1.42 mM), and incubated in a shaking water bath at 37°C. Initially, there was an increase in TBARS and lipofuscin-like pigments, two well-known end products of PUFA oxidative degradation, whereas PUFAs remained unchanged (incubation time: 1 h). After two or more hours of incubation, marked lipid peroxidation was noted, with the appearance of conjugated dienes and a decrease of PUFAs, indicating that lipid peroxidation had occurred after a lag phase during which TBARS were not produced from PUFAs. This suggests that another OH target was involved.  相似文献   

3.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

4.
A new low-molecular-weight peptide with phenol oxidase activity, named Pc factor, was isolated and purified from liquid culture of a white-rot basidiomycete Phanerochaete chrysosporium. Its molecular weight was about 600 Da estimated by gel-filtration. Three amino acids Glu, Gly and Val were detected in hydrolysate. Absorption peaks corresponding to amino acids and peptide were observed by UV and IR spectra analysis. And the signal of Cα of amino acid was also detected by 13C-NMR method. Pc factor had high thermostability and remained active in weakly alkalescent pH range. It could chelate Fe3+ and reduce it to Fe2+, but no hydroxyl radical HO▪ could be detected during the reaction process. It could oxidize phenolic lignin-model compounds such as 2,6-dimethoxyphenol (2,6-DMP), 2,2¢-azinobis (3-ethylbenzathiazoline-6-sulfinic acid) (ABTS) and syringaldazine in the absence of Mn2+ and H2O2. These characteristics differed greatly from those of manganese peroxi-dases. The oxidative catalysis of Pc factor can be enhanced by certain metal ions such as Cu2+ and Mn2+ etc., and O2 molecule was necessary for this reaction. In summary, Pc factor may function as an electron carrier in this novel oxidation-reduction system.  相似文献   

5.
A new low-molecular-weight peptide with phenol oxidase activity, named Pc factor, was isolated and purified from liquid culture of a white-rot basidiomycete Phanerochaete chrysosporium. Its molecular weight was about 600 Da estimated by gel-filtration. Three amino acids Glu, Gly and Val were detected in hydrolysate. Absorption peaks corresponding to amino acids and peptide were observed by UV and IR spectra analysis. And the signal of Cα of amino acid was also detected by 13C-NMR method. Pc factor had high thermostability and remained active in weakly alkalescent pH range. It could chelate Fe3+ and reduce it to Fe2+, but no hydroxyl radical HO˙ could be detected during the reaction process. It could oxidize phenolic lignin-model compounds such as 2,6-dimethoxyphenol (2,6-DMP), 2,2′-azinobis (3-ethylbenzathiazoline-6-sulfinic acid) (ABTS) and syringaldazine in the absence of Mn2+ and H2O2. These characteristics differed greatly from those of manganese peroxidases. The oxidative catalysis of Pc factor can be enhanced by certain metal ions such as Cu2+ and Mn2+ etc., and O2 molecule was necessary for this reaction. In summary, Pc factor may function as an electron carrier in this novel oxidation-reduction system.  相似文献   

6.
Previous data indicated that diquat-mediated protein oxidation (protein carbonyl formation) occurs through multiple pathways, one of which is lipid dependent, and the other, lipid independent. Studies reported here investigated potential mechanisms of the lipid-independent pathway in greater detail, using bovine serum albumin as the target protein. One hypothesized mechanism of protein carbonyl formation involved diquat-dependent production of H2O2, which would then react with site-specifically bound ferrous iron as proposed by Stadtman and colleagues. This hypothesis was supported by the inhibitory effect of catalase on diquat-mediated protein carbonyl formation. However, exogenous H2O2 alone did not induce protein carbonyl formation. Hydroxyl radical-generating reactions may result from the H2O2-catalyzed oxidation of ferrous iron, which normally is bound to protein in the ferric state. Therefore, the possible reduction of site-specifically bound Fe3+ to Fe2+ by the diquat cation radical (which could then react with H2O2) was also investigated. The combination of H2O2 and an iron reductant, ascorbate, however, also failed to induce significant protein carbonyl formation. In a phospholipid-containing system, an ADP:Fe2+ complex induced both lipid peroxidation and protein carbonyl formation; both indices were largely inhibitable by antioxidants. There was no substantial ADP:Fe2+-dependent protein carbonyl formation in the absence of phospholipid under otherwise identical conditions. Based on the lipid requirement and antioxidant sensitivity, these data suggest that ADP:Fe2+-dependent protein carbonyl formation occurs through reaction of BSA with aldehydic lipid peroxidation products. The precise mechanism of diquat-mediated protein carbonyl formation remains unclear, but it appears not to be a function of H2O2 generation or diquat cation radical-dependent reduction of bound Fe3+. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 185–190, 1998  相似文献   

7.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

8.
In the absence of added Fe2+, the ATPase activity of isolatedSchizosaccharomyces pombe plasma membranes (5–7 μmolP i per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50–80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both theK m of the enzyme for ATP and theV of ATP splitting. On exposing the membranes to the Fenton reagent (50 μmol/L Fe2+ +20 mmol/L H2O2), which causes a fast production of HO radicals, the ATPase is 50–60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO production.  相似文献   

9.
Formation of thiobarbituric acid-reactive substances (TBRS; nmol/mg lipids) indicative of lipid peroxidation was measured in whole cells and in isolated plasma membrane lipids from three yeast species differing in oxidant sensitivity (Schizosaccharomyces pombe, Saccharomyces cerevisiae andRhodotorula glutinis) after exposure to the Fenton reagent, FeII, H2O2,tert-butyl hydroperoxide (TBHP) and azo compounds (AAPH, ACHN). In whole cells, spontaneous TBRS formation rose in the sequenceS. pombe<S. cerevisiae<R. glutinis (1:∼5:∼7). Oxidants increased the TBRS production 13–18 fold in the sequence FeII∼TBHP>AAPH∼ACHN∼Fe-Fenton>H2O2. This increase need not be solely due to increased lipid peroxidation. In isolated plasma membrane lipids from all three species, the spontaneous TBRS production referred to 1 mg lipids was 9–13-fold higher than in whole cells. InS. pombe lipids, only TBHP increased the TBRS production. In lipids fromS. cerevisiae andR. glutinis, all added oxidants increased the spontaneous TBRS production 2–3 times in the sequence TBHP>ACHN>AAPH>FeII>Fe-Fenton>H2O2. Oxidant-induced TBRS production in both whole cells and isolated membrane lipids was partially suppressed by the lipid peroxidation inhibitors 2,6-di-tert-butyl-4-methylphenol (“butylated hydroxytoluene”; BHT) and the newly synthesized PYA12 compound. Both agents were more effective in isolated lipids than in whole cells and against OH-producing than against ROO-or RO-producing oxidants. Yeast membrane lipids, which are generally poor in polyunsaturated fatty acids, are thus subject to perceptible lipid peroxidation.  相似文献   

10.
The Oxygen activating mechanism of Fusarium lipoxygenase, a heme-containing dioxygenase, was studied. The enzyme did not require any cofactors, such as H2O2, however, both superoxide dismutase and catalase inhibited linoleate peroxidation by Fusarium lipoxygenase. A low concentration of H2O2 caused a distinct acceleration in enzymatic peroxidation. These results indicate that both O2? and H2O2 are produced as essential intermediates of oxygen activation during formation of linoleate hydroperoxides by Fusarium lipoxygenase. This peroxidation reaction was also prevented by scavengers of singlet oxygen (1O2), but not by scavengers of hydroxy 1 radical (OH). Generation of O2? in the enzyme reaction was detected by its ability to oxidize epinephrine to adrenochrome. Moreover, the rate of peroxide formation was greater in the D2O than in the H2O buffer system. These results suggest that the Haber–Weiss reaction (O2?+H2O2→OH?+OH·+1O2) is taking part in linoleate peroxidation by Fusarium lipoxygenase, and the 1O2 evolved could be responsible for the peroxidation of linoleate. H2O2 produced endogenously in the enzyme reaction might act as an activating factor for the enzyme. This possible mechanism of oxygen activation can explain the absence of a need for exogenous cofactors with Fusarium lipoxygenase in contrast to an other heme-containing dioxygenase, tryptophan pyrrolase, which requires an exogenous activating factor, such as H2O2.  相似文献   

11.
The irreversible loss of activity of the sarcolemma-localized β-receptor-adenylyl cyclase system (β-RAS) in myocardial ischemia is a well documented phenomenon. Alterations in the sarcolemma (SL) induced by reactive O2 species could be responsible for this loss. Therefore the influence of oxidation of SH-groups and lipid peroxidation induced by Fe2+/Vit. C on the β-RAS activity was studied. During incubation of SL with Fe2+/Vit. C a transient enhancement followed by a continuous loss of the β-RAS activity (isoprenaline-, NaF-, Gpp(NH)p-, forskolin-stimulated and basal activity) was observed. In contrast there occurred a continuous loss of SH-groups and lipid peroxidation, beginning immediately after the start of incubation. Loss of SH-groups and lipid peroxidation as well as changes in the β-RAS did not take place in the presence of the antioxidant t-Butyl-4-hydroxyanisole (BHA) or the Fe2+-chelator EGTA. In view of the known ischemia-induced formation of reactive O2 species our results show that these powerful oxidants could contribute to the modulation of the β-RAS during myocardial ischemia.  相似文献   

12.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

13.
The ability of paraquat radicals (PQ+.) generated by xanthine oxidase and glutathione reductase to give H2O2-dependent hydroxyl radical production was investigated. Under anaerobic conditions, paraquat radicals from each source caused chain oxidation of formate to CO2, and oxidation of deoxyribose to thiobarbituric acid-reactive products that was inhibited by hydroxyl radical scavengers. This is in accordance with the following mechanism derived for radicals generated by γ-irradiation [H. C. Sutton and C. C. Winterbourn (1984) Arch. Biochem. Biophys.235, 106–115] PQ+. + Fe3+ (chelate) → Fe2+ (chelate) + PQ++ H2O2 + Fe2+ (chelate) → Fe3+ (chelate) + OH? + OH.. Iron-(EDTA) and iron-(diethylenetriaminepentaacetic acid) (DTPA) were good catalysts of the reaction; iron complexed with desferrioxamine or transferrin was not. Extremely low concentrations of iron (0.03 μm) gave near-maximum yields of hydroxyl radicals. In the absence of added chelator, no formate oxidation occurred. Paraquat radicals generated from xanthine oxidase (but not by the other methods) caused H2O2-dependent deoxyribose oxidation. However, inhibition by scavengers was much less than expected for a reaction of hydroxyl radicals, and this deoxyribose oxidation with xanthine oxidase does not appear to be mediated by free hydroxyl radicals. With O2 present, no hydroxyl radical production from H2O2 and paraquat radicals generated by radiation was detected. However, with paraquat radicals continuously generated by either enzyme, oxidation of both formate and deoxyribose was measured. Product yields decreased with increasing O2 concentration and increased with increasing iron(DTPA). These results imply a major difference in reactivity between free and enzymatically generated paraquat radicals, and suggest that the latter could react as an enzyme-paraquat radical complex, for which the relative rate of reaction with Fe3+ (chelate) compared with O2 is greater than is the case with free paraquat radicals.  相似文献   

14.
Metformin, a drug widely used in the treatment of type 2 diabetes, has recently received attention due to the new and contrasting findings regarding its effects on mitochondrial function. In the present study, we evaluated the effect of metformin in isolated rat liver mitochondria status. We observed that metformin concentrations ≥8 mM induce an impairment of the respiratory chain characterized by a decrease in RCR and state 3 respiration. However, only metformin concentrations ≥10 mM affect the oxidative phosphorylation system by decreasing the mitochondrial transmembrane potential and increasing the repolarization lag phase. Moreover, our results show that metformin does not prevent H2O2 production, neither protects against lipid peroxidation induced by the pro-oxidant pair ADP/Fe2+. In addition, we observed that metformin exacerbates Ca2+-induced permeability transition pore opening by decreasing the capacity of mitochondria to accumulate Ca2+ and increasing the oxidation of thiol groups. Taken together, our results show that metformin can promote liver mitochondria injury predisposing to cell death. Cristina Carvalho and Sónia Correia contributed equally to this work.  相似文献   

15.
Zinnia elegans stems with 3,3′, 5, 5′-tetramethylbenzidine (TMB) in the presence and in the absence of catalase reveals the presence of xylem oxidase activities in the H2O2-producing lignifying xylem cells. This staining of lignifying xylem cells with TMB is the result of two independent mechanisms: one is the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other the catalase-insensitive (H2O2-independent) oxidation of TMB, probably due to the oxidase activity of xylem peroxidases. The response of this TMB-oxidase activity of xylem peroxidases to different exogenous H2O2 concentrations was studied, and the results showed that H2O2 at high concentrations (100–1,000 mM) clearly acted as an inactivator of this xylem TMB-oxidase activity, although some inhibitory effect could still be appreciated at 10 mM H2O2. This xylem TMB-oxidase activity resided in a strongly basic cell wall-bound peroxidase (pl about 10.5). Given such a scenario, it may be concluded that this TMB-oxidase activity of peroxidase is located in tissues capable of sustaining H2O2 production, and that the in situ oxidase activity shown by this enzyme is inactivated by high H2O2 concentrations. Received 20 April 1999/ Accepted in revised form 16 August 1999  相似文献   

16.
A system comprising laccase and a suitable phenol such as 4-hydroxybenzoic acid (HBA) or synthetic lignin (DHP) exhaustively peroxidized linoleic acid in acetate buffer. The presence of phenols in lignin was essential since an exhaustively methylated preparation of the same lignin did not support peroxidation. The peroxidation rate was greatly enhanced by Mn2+, which was oxidized to Mn3+ by laccase/HBA, whereas H2O2 inhibited strongly due to rapid reduction of Mn3+ by H2O2 with concomitant formation of O2. When acetate was replaced by Mn3+–chelating oxalate or malonate, there was no change in peroxidation rates in the absence of Mn2+, whereas strong inhibition was observed in the presence of Mn2+. In case of malonate part of the inhibition was due to H2O2 formation as a result of Mn3+ reduction by malonate. These findings suggest that laccase may contribute to fungal lipid peroxidation in vivo thus expanding its role in the biodegradation of lignin and other recalcitrant aromatic compounds.  相似文献   

17.
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as β-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N′-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 FeIII:L complexes were isolated and the crystal structures of Fe(HPPH)Cl2, Fe(4BBPH)Cl2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N′-bis-picolinoyl hydrazine; H2APH=N-4-aminobenzoyl-N′-picolinoyl hydrazine, H23BBPH=N-3-bromobenzoyl-N′-picolinoylhydrazine and H24BBPH=N-(4-bromobenzoyl)-N′-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The FeIII complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N′-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N′-(picolinoyl)-hydrazine), H2PPH, H23BBPH and H24BBPH, showed high efficacy at mobilizing 59Fe from cells and inhibiting 59Fe uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit 59Fe uptake could not be accounted for by direct chelation of 59Fe from 59Fe–Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.  相似文献   

18.
A model lipid peroxidation system dependent upon the hydroxyl radical, generated by Fenton's reagent, was compared to another model system dependent upon the enzymatic generation of superoxide by xanthine oxidase. Peroxidation was studied in detergent-dispersed linoleic acid and in phospholipid liposomes. Hydroxyl radical generation by Fenton's reagent (FeCl2 + H2O2) in the presence of phospholipid liposomes resulted in lipid peroxidation as evidenced by malondialdehyde and lipid hydroperoxide formation. Catalase, mannitol, and Tris-Cl were capable of inhibiting activity. The addition of EDTA resulted in complete inhibition of activity when the concentration of EDTA exceeded the concentration of Fe2+. The addition of ADP resulted in slight inhibition of activity, however, the activity was less sensitive to inhibition by mannitol. At an ADP to Fe2+ molar ratio of 10 to 1, 10 mm mannitol caused 25% inhibition of activity. Lipid peroxidation dependent on the enzymatic generation of superoxide by xanthine oxidase was studied in liposomes and in detergent-dispersed linoleate. No activity was observed in the absence of added iron. Activity and the apparent mechanism of initiation was dependent upon iron chelation. The addition of EDTA-chelated iron to the detergent-dispersed linoleate system resulted in lipid peroxidation as evidenced by diene conjugation. This activity was inhibited by catalase and hydroxyl radical trapping agents. In contrast, no activity was observed with phospholipid liposomes when iron was chelated with EDTA. The peroxidation of liposomes required ADP-chelated iron and activity was stimulated upon the addition of EDTA-chelated iron. The peroxidation of detergent-dispersed linoleate was also enhanced by ADP-chelated iron. Again, this peroxidation in the presence of ADP-chelated iron was not sensitive to catalase or hydroxyl radical trapping agents. It is proposed that initiation of superoxide-dependent lipid peroxidation in the presence of EDTA-chelated iron occurs via the hydroxyl radical. However, in the presence of ADP-chelated iron, the participation of the free hydroxyl radical is minimal.  相似文献   

19.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

20.
Demidchik V  Sokolik A  Yurin V 《Planta》2001,212(4):583-590
Effects of Cu2+ on a non-specific conductance and H+-ATPase activity in the plasma membrane of the freshwater alga Nitella flexilis L. Agardh was studied using a conventional microelectrode voltage-clamp technique. We show that a Cu2+-induced increase in the non-specific conductance is related to the formation of pores in the plasma membrane. Pore formation is the result of unidentified chemical reactions, since the Q10 for the rate of increase of conductance over time was about 3. Various oxidants and antioxidants (10 mmol/l H2O2, 10 mmol/l ascorbate, 100 μg/ml superoxide dismutase, and 100 μg/ml catalase) did not alter Cu2+-induced changes in the plasma membrane conductance, suggesting that the effect of Cu2+ was unrelated to peroxidation of plasma-membrane lipids. In contrast, organic and inorganic Ca2+-channel antagonists (nifedipine, Zn2+, Cd2+, Fe2+, Ni2+) inhibited the Cu2+-induced non-specific conductance increase. This suggests that changes in Ca2+ influx underlie this effect of Cu2+. Decreasing the pH or the ionic strength of external solutions also inhibited the Cu2+-induced plasma-membrane conductance increase. Copper was also found to inhibit plasma-membrane H+-ATPase activity with half-maximal inhibition occurring at about 5–20 μmol/l and full inhibition at about 100–300 μmol/l. The Hill coefficient of Cu2+ inhibition of the H+-ATPase was close to two. Received: 8 December 1999 / Accepted: 16 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号