首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

2.
Nutrient-diffusing subsrates were used to investigate nutrient limitation of attached algal assemblages in a shaded stream and an unshaded stream in northern California. Water from both streams contained low levels of nitrogen (< 14 μg.L?1) and very low N:P ratios (< 2). After 31 days of colonization and growth, attached algal biomass on nitrate-diffusing substrates was significantly greater than on control substrates in the unshaded stream. Nitrate-diffusing substrates also supported larger numbers of grazing insects in the unshaded stream. The prostrate diatoms Achnanthes lanceolata Bréb. and Coconeis placentula Ehr. displayed the most consistent positive responses to nitrate enrichment. Nutrient enrichment did not increase the accrual of algal biomass in the shaded stream, but algal biomass was significantly greater at sites located under openings in the tree canopy, implicating light as a limiting factor in this stream. Several Navicula and Nitzschia species, and one unidentified Gomphonema species, were positively associated with higher light levels in the shaded stream. Shade appears to be the primary factor limiting algal growth in small northern California streams, but when its effect is reduced by logging, the inherently low levels of nitrogen in these streams can become limiting.  相似文献   

3.
The heterotrichous alga Stigeoclonium tenue Küetzing is dominant in many streams with high densities of herbivores. Previous in situ studies in Walker Branch (WB), a woodland stream in eastern Tennessee, indicated that dominance by Stigeoclonium basal cells was “grazer-dependent”; however, Stigeoclonium also appeared to have a lower biomass–specific productivity rate than other species that dominated when snails were experimentally removed. Here, an explicit test of the grazing dependence of Stigeoclonium was made with unialgal cultures established in the laboratory. Five different “assemblage types” were tested: 1 and 2) unialgal cultures of Stigeoclonium at low and high biomass, 3 and 4) a mixed assemblage of diatoms at low and high biomass, and 5) a natural stream community. Reduction in chlorophyll a after exposure to snail grazing was dependent on assemblage type (one-way ANOVA, P < 0.0001); low biomass Stigeoclonium tiles and tiles from the stream (on which basal cells of Stigeoclonium were dominant) were most grazer-resistant. In addition, Stigeoclonium had a lower biomass-specific productivity rate (measured as H14CO3? uptake) than a mixed assemblage of diatoms, regardless of biomass level, suggesting an underlying tradeoff between resistance to herbivory and competitive ability. Additional laboratory experiments were conducted to determine the response of Stigeoclonium to high (approx. 150 μmol quanta ·m?2· s?1)and low (approx. 25 μmol quanta · m?2· s?1) irradiance when nutrients were at 1) ambient WB concentrations and 2) increased 1000× ambient concentrations. There was a positive response of growth to increased irradiance only under high nutrient conditions. This suggests that observed reductions in the abundance of Stigeoclonium under high irradiance/low nutrient conditions that occur on a seasonal basis in WB can be explained in part by autecological resource requirements of this alga. We use these results to model the response of algal communities dominated by basal-regenerating species (e.g. Stigeoclonium) to gradients in herbivory and productivity. The results of our culture studies, combined with an overview of factors affecting communities dominated by grazer-resistant species, illustrate how both broad-scale (e.g. functional form) and species-specific studies can be combined to achieve an understanding of community dynamics.  相似文献   

4.
Laboratory streams were used in a 42-day experiment designed to investigate how the spatial and temporal distribution of lotic periphyton created by current flow over cobble-size substrates is a affected by irradiance. The streams contained 22.5 × 22.5 × 4 cm substrate blocks and were exposed to either 385, 90 or 20 μE·m?2·s?1. We monitored periphyton succession in fast current regimes on top of blocks and in slower current regimes on surfaces recessed between blocks. The absolute differences in AFDW algal biomass between top and recessed substrates were significantly affected by irradiance and time. At the end of the experiment, biomass in streams exposed to 385 μE·m?2·s?1. was approximately 2 and 8 times greater than in streams exposed to 90 and 20 μE·m?2·s?1, respectively. Differences in biomass were greater between irradiance levels than between top and recessed substrates within an irradiance level. Irradiance also had a greater effect than current regime on the taxonomic composition of assemblages. Oscillatoria agardhii Gomont and Navicula minima Grun. characterized assemblages at 20 μE·m?2·s?1, whereas Fragilaria vaucheriae (Kütz.), Nitzschia oregona Sov., Navicula arvensis Hust. and Stigeoclonium tenue (Ag.) Kütz. were more abundant at the two higher irradiances. Detrended correspondence analysis indicated that the rate of succession was relatively high for assemblages at high irradiance and in the slow current regimes between blocks. The results suggested that in natural streams, periphyton patches produced by large differences in irradiance should have a greater effect on periphyton heterogeneity than substrate-induced patches. Moreover, the heterogeneity of algal patches produced by hydrologic differences over a substrate is constrained by irradiance level.  相似文献   

5.
Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m?2 · d?1. This was elevated to 39.6 g · m?2 · d?1 with a three‐dimensional (3‐D) screen, and to 47.7 g · m?2 · d?1 by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty‐six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan‐obacteria [blue–green algae]) self‐seeded from the GWR and demonstrated yearly cycling. Silica (SiO2) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%–25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega‐3 fatty acids a consistent component. Mathematical modeling of algal produ‐ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp‐ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega‐3 products. Based on the 3‐D prod‐uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat‐ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US).  相似文献   

6.
Temporal patterns of grazer-periphyton interactions in laboratory streams   总被引:1,自引:0,他引:1  
SUMMARY. 1. The snail Juga silicuta (500 m?2) and the caddisfly Dicosmoecus gilvipes (50 m?2) were introduced into separate laboratory streams on days 1, 9, 16 and 28 of algal development. The mayfly Baetis spp. (500 m?2) was introduced on days 1 and 16, and two streams did not receive grazers. We assessed the interaction between succession in the pcriphyton, herbivore type and time of encounter in a 40-day experiment. 2. In ungrazed streams, the chlorophyte Scenedesmus obliquus was the most abundant early colonizer. The relative abundance of diatoms increased after day 9, and at day 40 the algal assemblage consisted of a thick mat of diatoms and S. obliquus with an overstorey of filaments of the chlorophyte Stigeoclonium tenue. In general, introductions of grazers at any stage altered this pattern by removing biomass, accelerating the replacement of S. obliquus by diatoms, and suppressing the growth of filaments. Grazing also reduced the relative abundance of the larger diatom Nitzschia oregona but increased the relative abundance of the smaller adnate diatoms Nitzschia frustulum var. perpusilla and Navicula minima. 3. Dicosmoecus decreased algal biomass and altered successional trajectories to a greater degree than either Juga or Baetis. Dicosmoecus rapidly grazed the entire substrate, whereas Juga and Baetis only cleared patches in the assemblages. Little alteration in algal development was observed in the Baetis streams after day 16, probably because (he periphyton assemblages attained a size and structure that prevented effective grazing by Baetis. 4. The patchy grazing patterns of Juga and Baetis resulted in more diverse algal assemblages than either the Dicosmoecus grazed or ungrazed streams. In natural streams, the temporal and spatial pattern of grazing relative to the developmental stage of the periphyton may contribute to maintaining a mosaic of algal patches in different serai stages.  相似文献   

7.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

8.
The composition of algal species and pigments and the structural and functional characteristics of the algal community were investigated in an acid stream of southwestern Spain, the Río Tinto. The algal community had low diversity and showed few seasonal differences. It was mainly made up of Klebsormidium flaccidum Kütz. (Silva, Mattox & Blackwell) that produced long greenish or purplish filaments, Pinnularia acoricola Hust. (producing brown patches) and Euglena mutabilis Schmitz. The algal filaments made up a consistent biofilm that also included fungal hyphae, iron bacterial sheaths, diatoms, and mineral particles. HPLC analyses on Río Tinto samples showed that undegraded chl accounted for 67% of the total chl in the filamentous patches but were a minority in the brown patch (2.6%). The brown patch had a concentration of carotenoids eight times lower than that observed in the green patch. When chl concentrations were weighted for the proportion of the different patches on the streambed, undegraded chl a accounted for 89.2 mg chl a·m ? 2 of stream surface area (5.4 g C·m ? 2). This high algal biomass was supported by relatively high nutrient concentrations and by a high phosphatase activity (Vmax = 137.7 nmol methylumbelliferyl substrate·cm ? 2·h ? 1 1 Received 15 July 2002. Accepted 17 February 2003. , Km = 0.0045 μM). The remarkable algal biomass in Río Tinto potentially contributed to the bacterial–fungal community and to the macroinvertebrate community and emphasizes the role that the algae may have in the organic matter cycling and energy flow in extreme systems dominated by heterotrophic microorganisms.  相似文献   

9.
1. Benthic algal communities are shaped by the availability of nutrients and light and by herbivore consumption. Many studies have examined how one of these factors affects algal communities, but studies simultaneously addressing all three are rare. 2. We investigated the effects of nutrients, light and a herbivore (the snail Potamopyrgus antipodarum) on benthic stream algae in a fully factorial experiment in 128 circular streamside channels. Four nutrient levels (none added to highly enriched), four snail grazing pressures (no snails to 777 individuals m?2) and two light levels (ambient and 65% reduced) were applied. Colonising algae were dominated by diatoms (Bacillariophyta), which were determined to species using acid‐cleaned samples and assigned to functional groups according to their physiognomic growth form. 3. Diatom community structure changed considerably in response to our manipulations. Light had the strongest influence (as indicated by manova effect size), whereas nutrients had an intermediate effect and grazing was fairly weak. Relative abundances of six common diatom taxa decreased under reduced light, whereas five others became more prevalent. Eight taxa benefitted from nutrient enrichment, while three became rarer. Grazing affected the relative density of only one common taxon, which increased at higher grazing pressure. 4. Diatom functional groups also responded strongly. ‘Low profile’ taxa dominated at low resource levels (nutrients and especially light), whereas ‘high profile’ and ‘motile’ taxa became markedly more prevalent at higher resource levels. 5. Two‐way interactions between experimental factors were quite common. For example, Planothidium lanceolatum and Rossithidium petersenii responded more strongly to nutrient enrichment at reduced than at ambient light, whereas Cocconeis placentula responded more strongly at ambient light. For diatom functional groups, the benefit of nutrient enrichment for ‘motile’ diatoms was greater at ambient than at reduced light. 6. Our results imply that multifactor experiments are required to determine the main forces driving the composition of benthic algal communities. Further, our findings highlight the considerable potential of using functional algal groups as indicators of changing environmental conditions to complement the traditional taxonomic approach.  相似文献   

10.
Previous studies have shown major differences in the way biomass of stream periphyton is controlled by spatial variations in velocity. We hypothesize that these differences may be the result of different growth forms within the community. Some dense and coherent growth forms (e.g. mucilaginous diatom/cyanobacterial mats) may be resistant to diffusion and also resistant to dislodgment by shear stress. Higher velocities applied to such communities could therefore be expected to enhance biomass accrual by increasing rates of mass transfer, but without greatly increasing losses through sloughing. Conversely, other growth forms (e.g. long filamentous green algae) have an open matrix, and high rates of diffusion into the mats can potentially occur even at low velocity. However, as velocities increase, high skin friction and form drag should lead to higher rates of sloughing. The overall result of these processes should be that maximum biomass occurs at low velocities. This “subsidy-stress” hypothesis was tested twice with each of three different periphytal growth forms: a coherent, mucilaginous, diatom community; a moderately coherent, stalked/ short, filamentous diatom community; and an open-weave, long, filamentous green algal community. A monotonic increase in chl a biomass occurred as a function of near-bed velocities for the first of the two mucilaginous diatom communities investigated. No biomass-velocity relationship was found, however, with the second mucilaginous community, probably because the waters were highly enriched and mass transfer driven by molecular diffusion was probably high throughout the velocity gradient. Biomass was moderate at low velocities, peaked at near-bed velocities from 0.18 to 0.2 m·s?1 (~0.40–0.45 m·s?1 mean column velocity), and then decreased at higher velocities in both of the stalked/ short filament communities of diatoms analyzed. With the long filamentous green algal communities, a monotonic reduction in biomass occurred as a function of increases in velocity. Proliferations greater than 100 mg·m?2 chl a occurred at low near-bed velocities (i.e. <0.2 m·s?1), after which biomass declined nearly exponentially as a function of increasing velocity to less than 10 mg·m?2 chl a at velocities greater than 0.4 m·s?1. These biomass-velocity trends support our hypothesis that community growth form determines periphytal responses to spatial variations in velocity within stream reaches.  相似文献   

11.
1. The light : nutrient hypothesis (LNH) states that algal nutrient content is determined by the balance of light and dissolved nutrients available to algae during growth. Light and phosphorus gradients in both laboratory and natural streams were used to examine the relevance of the LNH to stream periphyton. Controlled gradients of light (12–426 μmol photons m?2 s?1) and dissolved reactive phosphorus (DRP, 3–344 μg L?1) were applied experimentally to large flow‐through laboratory streams, and natural variability in canopy cover and discharge from a wastewater treatment facility created gradients of light (0.4–35 mol photons m?2 day?1) and DRP (10–1766 μg L?1) in a natural stream. 2. Periphyton phosphorus content was strongly influenced by the light and DRP gradients, ranging from 1.8 to 10.7 μg mg AFDM?1 in the laboratory streams and from 2.3 to 36.9 μg mg AFDM?1 in the natural stream. Phosphorus content decreased with increasing light and increased with increasing water column phosphorus. The simultaneous effects of light and phosphorus were consistent with the LNH that the balance between light and nutrients determines algal nutrient content. 3. In experiments in the laboratory streams, periphyton phosphorus increased hyperbolically with increasing DRP. Uptake then began levelling off around 50 μg L?1. 4. The relationship between periphyton phosphorus and the light : phosphorus ratio was highly nonlinear in both the laboratory and natural streams, with phosphorus content declining sharply with initial increases in the light : phosphorus ratio, then leveling off at higher values of the ratio. 5. Although light and DRP both affected periphyton phosphorus content, the effects of DRP were much stronger than those of light in both the laboratory and natural streams. DRP explained substantially more of the overall variability in periphyton phosphorus than did light, and light effects were evident only at lower phosphorus concentrations (≤25 μg L?1) in the laboratory streams. These results suggest that light has a significant negative effect on the food quality of grazers in streams only under a limited set of conditions.  相似文献   

12.
We examined the hypothesis that the heterogeneity of epilithic algal assemblages in streams may be partly a result of hydrologic differences created when water flows over a rough substrate. A 32-day experiment was conducted in laboratory streams that contained either 22.5 × 22.5 × 4 cm or 7.5 × 22.5 × 4 cm tile blocks. Free water velocities in the streams overaged 28 cm·s?1. Hydrologic parameters and algal assemblages associated with surfaces on top of blocks and with recessed surfaces between blocks were compared to corresponding surfaces in streams with of relief. In streams with blocks, shear velocities averaged 1.7 cm·s?1 on the top of blocks and 0.8 cm·s?1 in the recessed areas. Shear velocity at corresponding surfaces in the control (no relief) streams averaged 1.9 cm·s?1 and exhibited little variation. The hydrologic differences created by the larger blocks significantly affected the distribution of algal biomass, with recessed areas having an average of 2.6 g·m?2 AFDW more biomass than surfaces on the top of blocks. Differences in shear velocities and biomass accumulation between top and recessed areas for the smaller blocks were less than for large blocks. Successional changes on all substrates were similar with the exception that recessed surfaces had a significantly greater abundance of the filamentous chlorophyte Stigeoclonium tenue (Ag.) Kütz after day 16. The results suggest that in cobble riffle areas of natural streams, the interaction between current flow and substrate relief has the potential to create patches of algae which are different in biomass and taxonomic composition.  相似文献   

13.
Microscopic epilithic algae in the River Itchen at Otterbourne near Southampton and in the Ober Water in the New Forest were studied during 1984 and 1985. The River Itchen rises from chalk springs and has a steady pH near 8.2 and a mean alkalinity of 236 mg HCO3 1–1; at the study site the river is about 16 m wide and 20 cm deep, with a mean flow rate of 0.33 m s–1 and a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The Ober Water, which drains sands and gravels, has a pH between 6.9 and 7.2 and a mean alkalinity of about 50 mg HCO3 1–1; at the study site it is about 6 m wide, with a mean flow rate of 0.27 m s–1 and a discharge ranging through the year between 0.08 and 1.0 m3 s–1.Epilithic algae removed from the pebbles that form the major part of the beds of both streams show seasonal changes in abundance and composition. Diatoms peaked in April/May and dominate the epilithic flora in both streams, comprising 70–95% of all algal cells; highest numbers of chlorophytes occurred in summer and cyanophytes increased in autumn. The species composition of the epilithic flora in the two streams was different, as was the population density; algal cell numbers ranged between 500 and 7000 cells mm–2 of stream floor in the River Itchen and between 8 and 320 cells mm–2 of stream floor in the Ober Water. The chlorophyll a content of epilithic algae in the River Itchen ranged between 115 and 415 mg m–2 of stream floor, representing an annual mean biomass of about 8 g m–2, whereas in the Ober Water a chlorophyll a content of 2.2 to 44 mg m–2 of stream floor was found, representing an annual mean biomass of about 1 g m–2. Cautious estimates of the annual production of epilithic algae in these streams suggest a value of about 600 g organic dry weight m–2 in the River Itchen and about 75 g m–2 in the Ober Water.  相似文献   

14.
Alan D. Steinman 《Oecologia》1992,91(2):163-170
Summary Irradiance level and grazer density were manipulated in a factorial design to examine the relative effects of biotic and abiotic factors on periphyton biomass, productivity, and taxonomic structure in a heavily grazed, woodland stream. Irradiance levels were increased from 0.26 to 12.42 mol quanta/m2/d by placing metal halide lamps over the stream. The major grazer in this system was the prosobranch snail Elimia clavaeformis. Its densities were reduced from ca. 750 individuals/m2 to near zero by raising platforms off the stream bottom. Experimental treatments were maintained for 48 days. Biomass-specific carbon fixation rates increased significantly in response to higher light levels, indicating that periphyton communities were light-limited at this time of year. However, positive effects of irradiance on areal-specific carbon fixation and biomass were detected only when grazer density was reduced. Basal cells of the chlorophyte Stigeoclonium dominated communities exposed either to low light or high grazing pressure. When light was increased and grazer density reduced, large or upright diatoms became more abundant. Results from this study indicated that limitation of periphyton photosynthesis could be mitigated by increasing the levels of an abiotic resource (light) to this system, but that periphyton biomass was controlled by biotic interactions.  相似文献   

15.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

16.
The resistance of stream periphyton to structural disturbance by increases in shear stress (simulating a spate) was investigated in a laboratory flow tank. We monitored loss of biomass from a filamentous community (dominated by Melosira varians) under four different levels of shear stress. In each case, any loss that was going to occur did so within 10 min for this community. In a second experiment, we tested the resistance of four different communities (two dominated by nonfilamentous diatoms and two dominated by filamentous green algae/diatoms) to increases in shear stress. Nine different levels of shear stress were used, ranging from 1- to 70-fold higher than the conditions to which the communities were acclimated. All communities were 14 days old, but some differences in initial biomass occurred that influenced the degree of resistance independently of species composition. Overall, the nonfilamentous diatom communities were the most resistant, and the filamentous communities were the least resistant. The kinetics of the sloughing process varied among community types, with a community dominated by Melosira varians/Gom-phonema parvulum losing 50% of its biomass with only a 3-fold increase in shear stress. In contrast, a community dominated by the nonfilamentous diatoms Fragilaria vaucheriae/Cymbella minuta lost <50% of its biomass after a 70-fold increase in shear stress. Shear stresses required for 50% loss of biomass for the different communities were as follows: 3.6 Newtons.m?2 for the Melosira varians/Gomphonema parvulum community, 10.0 N.m?2 for the Spirogyra sp./Gomphoneis her-culeana/Ulothrix zonata community, 50.6 N.m?2 for the Fragilaria construens/Cymbella minuta/Ach-nanthes minutissima community, and >90.0 N.m?2for the Fragilaria vaucheriae/Cymbella minuta community. These results show that spates without bedload movement can potentially have widely differing disturbance effects on periphyton loss among streams depending on the initial taxonomic composition of resident communities. These results have important implications for stream ecosystem analysis and modeling.  相似文献   

17.
1. While the balance of light and nutrients is known to influence the food quality of herbivores by altering algal phosphorus and nitrogen content, the combined effects of light and nutrients on fatty acid synthesis in freshwater periphyton are relatively unknown. In this study, we manipulated light and phosphorus concentration in large, flow‐through experimental streams to examine their effects on both elemental stoichiometry and fatty acid content in periphyton. 2. Two levels of phosphorus (4 and 80 μg L?1) and three of light (17, 40, 110 μmol photons m?2 s?1) were applied in a factorial design in two separate experiments. Diatoms dominated periphyton communities in both experiments, comprising >95% of algal biovolume. Periphyton growth in the streams was simultaneously affected by both resources, even at low rates of supply. 3. Periphyton C/P and C/N ratios increased with light augmentation and decreased with phosphorus enrichment, and consistent with the light : nutrient hypothesis (LNH). Light effects were strongest in streams with low phosphorus concentrations. 4. Periphyton fatty acids reflected the dominance of diatoms : palmitic (16 : 0), palmitoleic (16 : 1ω7) and eicosapentanoic (20 : 5ω3) were the principal saturated (SAFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), respectively. Linoleic (18 : 2ω6) and linolenic (18 : 3ω3) acids, characteristic of chlorophytes and cyanophytes, were rare, comprising <2% of total fatty acids. 5. Periphyton fatty acid profiles were highly sensitive to light and phosphorus. The proportion of fatty acids comprised by SAFA and MUFA increased with light augmentation and decreased with phosphorus enrichment, whereas PUFA decreased with light and increased with phosphorus. Light effects on fatty acid composition were strongest in phosphorus‐poor streams. PUFA declined with increasing light/phosphorus ratios in the streams, whereas ‘energy’ fatty acids (16 : 0 and 16 : 1) increased. The ratio of SAFA/PUFA was strongly and positively correlated with C/P and C/N ratios. SAFA and MUFA, normalised to dry mass, increased two‐ to threefold with increasing light, while PUFA normalised to dry mass was not significantly affected by light. 6. Similarities in the responses of fatty acids and elemental stoichiometry to light and phosphorus treatments suggested that they were influenced by a common mechanism. Both components of food quality appeared to be sensitive to light‐regulated rates of carbon fixation which, when coupled with insufficient supplies of phosphorus, caused diatom cells to store surplus carbon in SAFA, MUFA and other carbon‐rich compounds that diluted both essential fatty acids and mineral nutrients.  相似文献   

18.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

19.
1. Field experiments were undertaken in a small Danish lowland stream to study the role of invertebrate grazing, phosphorus concentration and irradiance in the regulation of benthic algal biomass on stones. 2. Algal biomass was regulated by invertebrate grazing. The gastropod Ancylus fluviatilis prevented algal biomass build up in early spring at a density of about 900 ind. m–2, and reduced algal biomass to very low levels during the algal growth period at a density of about 6000 ind. m–2. Grazing pressure therefore might regulate the magnitude of peak algal biomass in Gelbæk stream, a finding in agreement with earlier field observations. 3. As phosphorus enrichment to around 152 μg l–1 during the period when irradiance was not limiting did not result in any further increase in algal biomass, it can be concluded that algal growth in spring was not controlled by phosphorus limitation. 4. Algal biomass development differed significantly in a shaded and in a non-shaded reach of the stream. Only very low algal biomass accumulation was evident in the shaded reach, while in the non-shaded reach an algal biomass peak of about 800 mg chlorophyll m–2 was evident after 6 weeks of colonization. The shaded reach represented the light condition in Gelbæk stream after leaf proliferation of the overhead canopy and high bank vegetation. The findings therefore suggest that irradiance available to the algal community after shading from riparian vegetation prevents further algal biomass increase and hence determines the timing of peak algal biomass in the stream. 5. The irradiance experiment also suggests that if not regulated by invertebrate grazing or shading by an overhead canopy in the summer, then the magnitude of peak biomass in Gelbæk stream will be regulated by self-shading in the algal community. 6. These field experiments support theories, derived from laboratory experiments and field studies, that regulation of algal biomass is a complex interaction of top-down and bottom-up mechanisms.  相似文献   

20.
Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23°N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e.g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0–22.3 mg m−2. Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to ‘gardening’ by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Luis Mauricio Bini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号