首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In control of a bioprocess, setpoint of fed-batch fermentation processes has a great influence on both the cost and the operating efficiency. Determination of a setpoint depends on the system and objective function. This work investigates two operating conditions for a fed-batch culture of L-lysine production. One is to maintain the reducing sugar concentration (RSC) on a constant setpoint, whereas the other has a piecewise variation of the RSC setpoint. Productivity, yield, and a cost function are employed to evaluate the performance of different setpoints on the fermentation process. Constant setpoint which is commonly used in fed-batch culture is not the best approach in L-lysine fermentation. Piecewise variation of setpoint shows that the better policy is to set the RSC at a higher concentration in the early cell growth stage then to decrease the RSC to a lower level.  相似文献   

2.
Four software sensors based on standard on-line data from fermentation processes and simple mathematical models were used to monitor a number of state variables in Escherichia coli fed-batch processes: the biomass concentration, the specific growth rate, the oxygen transfer capacity of the bioreactor, and the new R O/S sensor which is the ratio between oxygen and energy substrate consumption. The R O/S variable grows continuously in a fed-batch culture with constant glucose feed, which reflects the increasing maintenance demand at declining specific growth rate. The R O/S sensor also responded to rapid pH shift-downs reflecting the increasing demand for maintenance energy. It is suggested that this sensor may be used to monitor the extent of physiological stress that demands energy for survival.  相似文献   

3.
Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.  相似文献   

4.
The fermentation kinetics Zymomonas mobilis were studied near zero growth rate in fed-batch cultures and continuous cultures with complete cell recycle. The results show the ethanol enhances that specific substrate conversion rate under these conditions. The maximum achievable ethanol concentration in continuous cultures with cell recycle (66 g/L) was significantly lower than in fed-batch cultures (100 g/L). The results indicate that growth-rate-independent metabolism is not instantaneous and can lag behind steadily increasing ethanol concentrations in fed-batch fermentations. A model is proposed to account for this slow adaptation.  相似文献   

5.
This article discusses issues related to estimation and monitoring of fermentation processes that exhibit endogenous metabolism and time-varying maintenance activity. Such culture-related activities hamper the use of traditional, software sensor-based algorithms, such as the extended kalman filter (EKF). In the approach presented here, the individual effects of the endogenous decay and the true maintenance processes have been lumped to represent a modified maintenance coefficient, m(c). Model equations that relate measurable process outputs, such as the carbon dioxide evolution rate (CER) and biomass, to the observable process parameters (such as net specific growth rate and the modified maintenance coefficient) are proposed. These model equations are used in an estimator that can formally accommodate delayed, infrequent measurements of the culture states (such as the biomass) as well as frequent, culture-related secondary measurements (such as the CER). The resulting multirate software sensor-based estimation strategy is used to monitor biomass profiles as well as profiles of critical fermentation parameters, such as the specific growth for a fed-batch fermentation of Streptomyces clavuligerus. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
通过三联30L全自动发酵罐对虾青素产生菌法夫酵母的分批发酵动力学进行了研究,结果表明,法夫酵母的生长与限制性基质葡萄糖浓度之间符合Logistic方程,建立了细胞生长、产物合成和基质消耗随时间变化的数学模型。应用MATLAB软件对发酵动力学模型进行最优参数估计和非线性拟和,获得最大比生长速率(umax)和产物得率(Yp/x)分别为0.1829/h、0.1524g/g,虾青素分批发酵中细胞生长与产物合成属于偶联型,模型模拟计算结果和实验值能较好地吻合,动力学研究结果表明该模型能较好地反映细胞的生长、底物消耗和产物合成过程机制。  相似文献   

7.
Pseudomonas putida KT2442 is able to accumulate medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) as intracellular inclusions on a variety of fatty acids and many other carbon sources. Some of these substrates, such as octanoic acid, alkenoic acids, and halogenated derivatives, are toxic when present in excess. Efficient production of mcl-PHAs on such toxic substrates therefore requires control of the carbon source concentration in the supernatant. In this study, we develop a closed-loop control system based on on-line gas chromatography to maintain continuously fed substrates at desired levels. We used the graphical programming environment LABVIEW to set up a flexible process control system that allows users to perform supervisory process control and permits remote access to the fermentation system over the Internet. Single-substrate supernatant concentration in a high-cell-density fed-batch fermentation process was controlled by a proportional (P) controller (P = 50%) acting on the substrate pump feed rate. Na-octanoate concentrations oscillated around the setpoint of 10 mM and could be maintained between 0 and 25 mM at substrate uptake rates as high as 90 mmol L(-1) h(-1). Under cofeeding conditions Na-10-undecenoate and Na-octanoate could be individually controlled at 2.5 mM and 9 mM, respectively, by applying a proportional integral (PI) controller for each substrate. The resulting copolymer contained 43.5 mol% unsaturated monomers and reflected the ratio of 10-undecenoate in the feed. It was suggested that both substrates were consumed at similar rates. These results show that this control system is suitable for avoiding substrate toxicity and supplying carbon substrates for growth and mcl-PHA accumulation.  相似文献   

8.
An new cascade control system is presented that reproducibly keeps the cultivation part of recombinant protein production processes on its predetermined track. While the system directly controls carbon dioxide production mass and carbon dioxide production rates along their setpoint profiles in fed-batch cultivation, it simultaneously keeps the specific biomass growth rates and the biomass profiles on their desired paths. The control scheme was designed and tuned using a virtual plant environment based on the industrial process control system SIMATIC PCS 7 (Siemens AG). It is shown by means of validation experiments that the simulations in this straightforward approach directly reflect the experimentally observed controller behaviour. Within the virtual plant environment, it was shown that the cascade control is considerably better than previously used control approaches. The controller significantly improved the batch-to-batch reproducibility of the fermentations. Experimental tests confirmed that it is particularly suited for cultivation processes suffering from long response times and delays. The performance of the new controller is demonstrated during its application in Escherichia coli fed-batch cultivations as well as in animal cell cultures with CHO cells. The technique is a simple and reliable alternative to more sophisticate model-supported controllers.  相似文献   

9.
Reliable control of the specific growth rate (μ) in fed-batch fermentations depends on the availability of accurate online estimations of the controlled variable. Due to difficulties in measuring biomass, μ is typically estimated using reference models relating measurements of substrate consumption or oxygen uptake rate to biomass growth. However, as culture conditions vary, these models are adapted dynamically, resulting in complex algorithms that lack the necessary robustness for industrial applicability. A simpler approach is presented where biomass is monitored using dielectric spectroscopy. The measurements are subjected to online balances and reconciled in real time against metabolite concentrations and off-gas composition. The reconciled biomass values serve to estimate the growth rate and a simple control scheme is implemented to maintain the desired value of μ. The methodology is developed with the yeast Kluyveromyces marxianus, tested for disturbance rejection and validated with two other strains. It is applicable to other cellular systems with minor modifications.  相似文献   

10.
A two stage, exponential feeding strategy with mixed glycerol/methanol substrate was used in a fed-batch recombinant Pichia pastorisfermentation. The feeding strategy was developed using a simple model based on mass balances, Monod-type growth kinetics, and constant specific heterologous protein production rate. The model accurately predicted cell growth, and demonstrated the usefulness of a rational, model-based approach for improving the productivity of recombinant P. pastoris fermentation.  相似文献   

11.
发酵动力学教学释疑解难尝试   总被引:1,自引:0,他引:1  
在发酵动力学课程教学中,针对菌体生长速率与菌体比生长速率、菌体实际生长得率系数(Yx/s)与理论生长得率系数(Ygs)、产物实际得率系数(Yp/s)与理论得率系数(Yps)、补料分批发酵中比生长速率调控等常见知识难点进行了释疑解难尝试,收到了较好的课堂教学效果。  相似文献   

12.
The application of model based control techniques to biotechnological processes is often hampered due to the lack of reliable on-line sensors. This problem can be tackled by the application of software sensors, in which the available hardware measurements are combined with the model equations. The resulting estimates serve as additional measurements useful for process monitoring and control. In this paper, an observer based estimator for the specific growth rate based on on-line viable biomass measurements is studied. Several fed-batch experiments with baker's yeast in a stirred tank bioreactor illustrate the design, tuning, and implementation from a practical point of view. The main contributions of this paper are to illustrate (i) the implementation and validation of the presented algorithm in real-time, (ii) the use of an advanced on-line biomass measurement, and (iii) the design and tuning of the algorithm from a practical point of view. Real-time knowledge of the specific growth rate is important because it yields information on the viability of the cells and it can be used in real-time feedback control algorithms.  相似文献   

13.
An algorithm for operating a fed-batch fermentor at an optimum specific fermentation rate is proposed. It does not require on-line measurement of nutrient concentration in the culture medium. An on-line estimate of the specific fermentation rate is sufficient for implementation of this scheme. The algorithm is model independent and works well even with poor estimates of the product yields and the specific fermentation rate. Results of a detailed simulation study are presented for a simple case of optimization of cell-mass production in a fed-batch fermentor. The results clearly demonstrate the efficacy of this algorithm under a wide range of fermentation situations.  相似文献   

14.
To obtain a high cell density of recombinant Saccharomyces cerevisiae (INVSc 1 strain bearing a 2 microm plasmid, pYES2 containing a GAL1 promoter for expression of the beta-galactosidase gene), the yeast was grown with glycerol as the substrate by fed-batch fermentation. The feeding strategy was based on an on-line response of the medium pH to the consumption of glycerol. The approach was to feed excess carbon into the medium to create a benign environment for rapid biomass buildup. During cell growth in the presence of glycerol, the release of protons in the medium caused a decrease in pH and the consumption rate of ammonium phosphate served as an on-line indicator for the metabolic rate of the organism. The extent of glycerol feeding in a fed-batch mode with pH control at 5.0 +/- 0.1 was ascertained from the automatic addition of ammonium phosphate to the medium. The glycerol feeding to ammonium phosphate addition ratio was found to be 2.5-3.0. On the basis of the experiments, a maximum dry cell biomass of 140 g per liter and a productivity of 5.5 g DCW/L/h were achieved. The high cell density of S. cerevisiae obtained with good plasmid stability suggested a simple and efficient fermentation protocol for recombinant protein production.  相似文献   

15.
Application of experimental design techniques to Pirt's yield model shows that it is important to collect data at the lowest and highest specific growth rates. In the fed-batch fermentation process, values of specific growth rate can be varied from the maximum value at the start of the process to very low values near the end of the experiment. Candida utilis was cultivated using batch followed by fed-batch culture with glucose as the main source of carbon and energy. Values of substrate concentration, oxygen consumption, carbon dioxide evolution, liquid volume, flow rate cell concentration, and nitrogen concentration, which was an indirect measure of biomass, were measured. Least-squares estimates of the true biomass energetic yield and maintenance coefficient were obtained using a multivariate statistical analysis procedure referred to as the covariate adjustment procedure. Methods of selecting the best estimates using covariate adjustment are illustrated. The results show that useful parameter estimates with relatively short confidence intervals can be obtained using these statistical methods.  相似文献   

16.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

17.
In industrial fed-batch cultivations it is often necessary to control substrate concentrations at a low level to prevent the production of overflow metabolites and thus optimize the biomass yield. A new method for on-line monitoring and fed-batch control based on fluorescence measurements has been developed. Via instantaneous in situ measurements and multivariate data analysis a chemometric model has been established, which enables the rapid detection of ethanol production at aerobic Saccharomyces cerevisiae fed-batch cultivations. The glucose feed rate is controlled by predicting the metabolic state directly from the fluorescence intensities. Thus, ethanol production could be avoided completely while increasing the biomass yield accordingly. The robust instrumentation is suitable for industrial applications.  相似文献   

18.
A personal computer-based on-line monitoring and controlling system was developed for the fermentation of microorganism. The on-line HPLC system for the analysis of glucose and ethanol in the fermentation broth was connected to the fermenter via an auto-sampling equipment, which could perform the pipetting, filtration and dilution of the sample and final injection onto the HPLC through automation based on a programmed procedure. The A/D and D/A interfaces were equipped in order to process the signals from electrodes and from the detector of HPLC, and to direct the feed pumps, the motor of stirrer and gas flow-rate controller. The software that supervised the control of the stirring speed, gas flow-rate, pH value, feed flow-rate of medium, and the on-line measurement of glucose and ethanol concentration was programmed by using Microsoft Visual Basic under Microsoft Windows. The signal for chromatographic peaks from on-line HPLC was well captured and processed using an RC filter and a smoothing algorithm. This monitoring and control system was demonstrated to be effective in the ethanol fermentation of Zymomonas mobilis operated in both batch and fed-batch modes. In addition to substrate and product concentrations determined by on-line HPLC, the biomass concentration in Z. mobilis fermentation could also be on-line estimated by using the pH control and an implemented software sensor. The substrate concentration profile in the fed-back fermentation followed well the set point profile due to the fed-back action of feed flow-rate control.  相似文献   

19.
Application of balancing methods in modeling the penicillin fermentation   总被引:3,自引:0,他引:3  
This paper shows the application of elementary balancing methods in combination with simple kinetic equations in the formulation of an unstructured model for the fed-batch process for the production of penicillin. The rate of substrate uptake is modeled with a Monod-type relationship. The specific penicillin production rate is assumed to be a function of growth rate. Hydrolysis of penicillin to penicilloic acid is assumed to be first order in penicillin. In simulations with the present model it is shown that the model, although assuming a strict relationship between specific growth rate and penicillin productivity, allows for the commonly observed lag phase in the penicillin concentration curve and the apparent separation between growth and production phase (idiophase-trophophase concept). Furthermore it is shown that the feed rate profile during fermentation is of vital importance in the realization of a high production rate throughout the duration of the fermentation. It is emphasized that the method of modeling presented may also prove rewarding for an analysis of fermentation processes other than the penicillin fermentation.  相似文献   

20.
An optimized fed-batch cultivation process for the production of the polyoma virus capsid protein VP1 in recombinant Escherichia coli BL21 bacteria is presented. The optimization procedure maximizing the amount of desired protein is based on a mathematical model. The model distinguishes an initial cell growth phase from a protein production phase initiated by inducer injection. A new approach to model the target protein formation rate was elaborated, where product formation is primarily dependent on the specific biomass growth rate. Lower growth rates led to higher specific protein concentrations. The model was identified from a series of fed-batch experiments designed for parameter identification purposes and possesses good prediction quality. Then the model was used to determine optimal open-loop control profiles by manipulating the substrate feed rates in both phases as well as the induction time. Feed-rate optimization has been solved using Pontryagin's maximum principle. The solution was validated experimentally. A significant improvement of the process performance index was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号