首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 130 毫秒
1.
基于MODIS-EVI区域植被季节变化与气象因子的关系   总被引:8,自引:2,他引:6  
以浙江省为研究区域,利用2001—2004年MODIS-EVI和52个气象站点的日平均气温和日降水量,结合区域土地利用现状数据,采用时滞互相关分析方法,分析耕地、林地、园地增强型植被指数(EVI)季节变化与气温、降水的相关性.结果表明:浙江省大部分地区EVI对气温的最大响应没有时滞性,而对降水最大响应时滞为1个月左右.气温、降水对大部分地区植被生长季节变化有显著影响的时效均约为50 d.不同滞后时间,3种用地类型植被EVI与气温、降水的相关系数大小不同,在零时滞时,林地最大,园地次之,耕地最小;在非零时滞时,耕地最大,园地次之,林地最小.3种用地类型植被EVI与气温的相关系数均大于降水,说明气温对植被EVI季节变化的影响比降水明显.  相似文献   

2.
水分利用效率(water use efficiency,WUE)是陆地生态系统响应全球变化的重要参数,分析区域生态系统WUE的变化特征及其与气象因子之间的响应关系,对于区域生态系统碳水循环研究以及水资源的科学管理具有重要意义。本文以三江平原为研究区,基于MODIS GPP和ET遥感数据、气象数据以及2000年、2014年土地覆盖数据,分析2000-2014年间植被WUE的时空变化特征以及植被WUE与关键气象因子之间的响应关系,并分析了土地覆盖变化下各植被类型WUE的变化特征。结果表明:三江平原WUE年均值变化呈波动式减少趋势,多年平均植被WUE为1.44 g C·kg^-1H2O;WUE年内变化均近似呈"单峰型"曲线,1-3月及11、12月,WUE均处于最低值,在植被生长季(5-9月)期间,WUE均较高;季节WUE均值由高到低依次为夏季>秋季>春季>冬季;各植被类型WUE年内变化呈"双峰型"曲线,峰值主要分布在4-6月和9月;不同植被类型的年均WUE值从大到小依次为:混交林>针叶林>阔叶林>草地>耕地>永久湿地;三江平原植被WUE与降水、相对湿度、水气压呈正相关,与气温、日照时数呈负相关;随着耕地面积的减少,耕地WUE增加了11.1%,随着落叶阔叶林、草地面积的增加,其植被WUE分别增加了12.8%、15.9%。  相似文献   

3.
1981-2013华北平原气候时空变化及其对植被覆盖度的影响   总被引:12,自引:0,他引:12  
基于1981—2013年华北平原气象数据,对华北平原近30a的气候时空变化趋势与突变情况进行分析,并结合GIMMSNDVI(1981—2006年)和MODIS-NDVI(2000—2013年)遥感数据,探讨气候突变影响下,华北平原1981—2013年植被覆盖度的空间分布和变化特征。结合生态学分区,从不同时空尺度出发,分析华北平原不同生态分区内气候因子与植被覆盖度在年代际、年际和月变化的相关关系。结果发现:(1)1981—2013年,华北平原气温整体呈现显著上升趋势(0.20℃/10a,P0.01),春季气温的升高、15℃等温线控制范围的扩大和年均温0℃等值线在华北平原的消失,是区域平均气温升高的诱因。华北平原降水整体呈现显著减少趋势(-1.75mm/10a,P0.05),其中秋季降水量减少过快,400—600mm降水等值线控制范围的扩大、600—800mm和800—1000mm降水等值线的范围的缩小,共同造成区域降水量的减少。四季气候倾向率的特征变化敏感区域主要位于北纬35°—39°之间。1991—1994年为华北平原气候的突变时期。(2)华北平原植被覆盖度总体呈现上升的趋势,呈增加趋势的面积占总面积的55%。人类活动不仅加速了区域植被覆盖度的降低,也加剧了降低速率的变快。(3)总体上,研究区月尺度植被覆盖度与气候因子的相关性高于年尺度的值。植被覆盖度与年降水量的偏相关性高于其与年均温的偏相关性。年均温对农业生态区和森林生态区的植被覆盖度的影响更大,草原生态区的植被覆盖度对年降水量的依赖性更强。在月尺度上降水量对植被的影响具有时滞效应。气温对草原生态区具有时滞效应,降水量对农业生态区具有时滞效应。(4)华北平原干热化的气候突变降低了植被覆盖度的增加趋势。从植被覆盖度出发,草原生态区对气候突变的响应最明显;从变化速率角度出发,农田生态区的响应最明显。就整体而言,人类活动的影响力还在持续增强,且呈现出在退化区的作用力高于改善区的趋势。气候突变后,出现了人类活动在植被覆盖度的改善区的相对作用力高于退化区的变化。  相似文献   

4.
生态水分利用效率(water use efficiency,WUE)是碳-水循环的重要参数之一,明晰其时空演变特征对水资源短缺地区生态系统的健康发展具有重要的意义。海河流域水资源短缺是区域农业发展的重要制约因素,基于遥感、气象数据,利用趋势分析、相关分析等方法分析了海河流域2000—2014年总初级生产力(gross primary productivity,GPP)、蒸散量(evapotranspiration,ET)及WUE的时空分布特征,并识别WUE对降水、气温及干旱的响应。研究结果表明:(1)时间上,GPP和ET的变化趋势不显著,WUE呈现显著的增加趋势,增速为0.0185 gC/kg H_2O a~(-1)(R~2=0.6299,P0.01);(2)空间上,WUE和GPP均呈现从东南向西北减小的趋势,高值区主要分布在华北平原农业生态区和京津唐城镇与城郊农业生态区。从变化趋势来看,黄土高原农业与草原生态区的GPP和WUE上升趋势最大;(3)植被类型中,农田的WUE值最高,草地的WUE最低,农田、有林草原和草地均呈现显著的增加趋势(P0.05);(4)影响因素上,降水对WUE的影响最大,WUE由降水、干旱和气温控制的区域分别占整个流域植被面积的44.44%、39.23%和16.01%。  相似文献   

5.
1982-2003年东北林区森林植被NDVI与水热条件的相关分析   总被引:13,自引:1,他引:12  
以气象站点为研究单元,将1982—2003年东北林区森林植被月平均、季平均和年平均NDVI数据与其对应的水热条件(温度和降水)进行相关、偏相关和复相关分析。结果表明:温度是影响东北林区森林植被NDVI的最主要气候因子。春季、秋季不同森林植被平均NDVI与温度和降水呈极显著相关(P<0.01),其与温度的相关性高于其与降水的相关性。寒温带针叶林NDVI在生长季与温度和降水呈极显著相关(P<0.01),其与降水的相关性略高于其与温度的相关性,而全年温度对寒温带针叶林生长的影响高于降水。寒温带针叶林NDVI在4月份与降水的时滞偏相关性高于其他月份,相关系数达-0.385。温带针阔叶混交林NDVI在4—7月与温度的时滞偏相关性较高,相关系数分别为0.581,0.490,-0.266和-0.297。暖温带落叶阔叶林NDVI在4月份与温度的时滞偏相关性高于其他月份,相关系数为0.571;在7月份与降水时滞偏相关性高于其他月份,相关系数为-0.367。森林植被生长增长阶段NDVI受综合水热条件(温度和降水)的滞后影响显著。  相似文献   

6.
山西典型生态区植被指数(NDVI)对气候变化的响应   总被引:2,自引:0,他引:2  
利用1982—2006年8 km的NSASA/GIMMS半月合成的月植被指数(NDVI)和同期气候数据,根据山西地形地貌结合土地利用及植被调查资料,将山西划分为9个区域,分析了这9个典型生态区的NDVI年际、年代际以及月季的变化规律,同时分析了NDVI对降水、气温以及干旱指数PDSI等气候要素的响应特征。结果表明:近25年来山西植被指数呈起伏上升趋势,并存在明显的年际变化;NDVI在空间变化上表现为南部好于北部、东部好于西部,不同生态区中林区>农业区>农牧区;林区春季植被指数显著上升,除晋南农业区月变化为双峰型外,其他生态区均表现为单峰型;林区NDVI与气温存在一致相关,PDSI与NDVI的相关好于降水、气温单一因子;植被指数对气候年际变化响应有明显的滞后性,降水的年际变化对植被指数影响最大,尤其是降水的累积效应。  相似文献   

7.
余振  孙鹏森  刘世荣 《植物生态学报》2011,35(11):1117-1126
植被的动态变化及其与环境的关系已成为全球变化研究的热点问题。陆地样带是进行全球变化驱动因素梯度分析的有效途径。该研究依托中国东部南北样带(NSTEC), 对南北样带不同时间尺度的气候因子和植被活动变化特征进行了分析, 并重点阐述了具有代表性的12种植被类型对气候因子的响应方式。研究结果表明: 南北样带植被的归一化植被指数(NDVI)的变化同时受控于气温和降水, 但是在不同的空间和时间尺度上植被NDVI的响应方式各异。在年时间尺度上, 只有温带落叶灌丛(TDS)的NDVI受气温控制; 而温带禾草草原(TGS)和亚热带和热带针叶林(STCF)的NDVI同时受气温和降水调控。其他植被类型的年NDVI与年平均气温和年总降水量没有直接显著的联系, 而受年内气温变化和降水分配状况的影响更大。在月时间尺度上, NDVI与气温的关系在不同类型植被之间存在很大差异。一般而言, 植被NDVI与前4个月内的气温关系最为密切, 并且从1月份到4月份气温的滞后时长在缩短。其中, 温带针叶林(TCF)、温带落叶阔叶林(TDBF)、TDS、STCF和亚热带热带草丛(STG)等植被类型, 5-8月的NDVI与气温普遍呈负相关关系。草原和灌丛植被类型当月NDVI与当月降水量主要以正相关为主, 而森林类型当月NDVI与当月降水量主要以负相关为主。  相似文献   

8.
张远东  庞瑞  顾峰雪  刘世荣 《生态学报》2016,36(6):1515-1525
水分利用效率是深入理解生态系统水碳循环耦合关系的重要指标。西南高山地区是响应气候变化的重点区域,研究西南高山地区水分利用效率动态及其对气候变化的响应,对于评估区域碳水耦合关系及对全球气候变化的响应具有重要意义。应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区水分利用效率(Water use efficiency,WUE)的时空变化,分析了其对气候变化的响应。结果表明:(1)西南高山地区1954—2010年水分利用效率均值为1.13 g C mm-1m-2。3种主要植被类型草地、常绿针叶林和常绿阔叶林的WUE分别为1.35、1.14、0.99 g C mm-1m-2。在空间分布上,WUE与海拔显著正相关(r=0.156,P0.05),而与温度则显著负相关(r=-0.386,P0.01)。(2)在时间尺度上,1954—2010年西南高山地区整体WUE降低趋势显著(P0.01),变动区间为0.83-1.46g C mm-1m-2,平均每年下降0.006g C mm-1m-2。整体WUE年际变化与温度呈显著负相关(r=-0.727,P0.01),与降水量相关性不显著;整体WUE下降主要原因是温度上升引起的ET增加速率大于NPP增加速率。(3)1954—2010年西南高山地区3种主要植被类型草地、常绿针叶林及常绿阔叶林WUE均显著下降(P0.01),下降速度分别为-1.03×10-2、-6.17×10-3、-1.37×10-3g C mm-1m-2a-1。西南高山地区76.3%格点WUE年际变化与温度显著负相关(P0.05),34.1%格点WUE年际变化与降水量显著正相关(P0.05)。草地和常绿针叶林WUE年际变化与温度显著负相关(r=-0.889,P0.01;r=-0.863,P0.01),与降水量相关性不显著。由于西南高山地区降水较为丰富,且过去57年降水变化不显著,因此该地区WUE的时空格局主要受温度变化的影响。1954—2010年期间温度升高造成的ET增加显著高于NPP的增加是该地区WUE下降的主要原因。未来需要获取更高空间分辨率的气候、土壤、植被数据,从而更加准确和精确地模拟西南高山地区水碳循环及其耦合关系对气候变化的响应。  相似文献   

9.
中国北方草原植被对气象因子的时滞响应   总被引:10,自引:0,他引:10       下载免费PDF全文
利用1982~1997年的气温、降水和1983~1997年生长季的NOAA/AVHRR的归一化植被指数(Normalized differential vegetation index, NDVI)遥感数据,分析了中国北方温带草原植被生长对气象因子的时滞响应。根据4个时间尺度(1~4个月)和4个时滞期(前0~3个月)将降水数据进行16种组合方式,计算了植被的NDVI与同期及前期(前1~6个月)降水之间的相关系数。同时,计算了植被的NDVI与同期和前一个月气温之间的相关系数。结果表明:1)中国北方温带草原植被的NDVI与同期降水和气温的显著相关。2)植被的NDVI对前一个月降水的时滞响应最强烈,植被的NDVI与当月降水和前两个月降水的累积量相关性最强。3)在生长季的起始阶段,去冬、今春的降水总量对草甸草原植被的生长有重要的作用。在生长季的中期和后期,当月和前一、二个月的降水对典型草原和荒漠草原的植被有显著影响。4)在草甸草原、典型草原区,生长季早期的气温均对植被生长的影响较为显著。在荒漠草原区,气温不仅在生长季初期与植被的NDVI呈现正相关,而且在生长季的中后期,气温与植被的NDVI呈现负相关性。  相似文献   

10.
陕西省植被覆盖时空变化及其对极端气候的响应   总被引:5,自引:0,他引:5  
高滢  孙虎  徐崟尧  张世芳 《生态学报》2022,42(3):1022-1033
基于2001—2018年MODIS NDVI数据,从生态分区视角分析陕西省归一化植被指数(NDVI)的时空变化特征,并结合该地区31个气象站点日值数据,探讨NDVI对极端气温和极端降水指数的响应特征。结果表明:(1)陕西省及其各生态区的NDVI变化均显著上升,整体呈南高北低的分布特点,其中秦巴山地落叶与阔叶林生态区(IV)NDVI值最高为0.86,陕北北部典型草原生态区(I)NDVI值最低为0.38。(2)年际尺度上,陕西省NDVI与极端气温暖极值(暖夜日数)和极端降水指数总体呈显著正相关(P<0.05),在陕西省北部NDVI变化主要受极端降水的影响,南部则对极端气温的敏感度更高。(3)多年月尺度上,各生态区NDVI对极端气温冷极值(最低气温、日最低气温的极低值和日最高气温的极低值)和极端气温暖极值(最高气温、日最低气温的极高值和日最高气温的极高值)存在明显的滞后性,滞后时间多为3个月;与极端降水指数(单日最大降水量和连续5日最大降水量)的滞后时间为2个月,说明陕西省内NDVI对极端气候的响应具有显著的滞后效应。  相似文献   

11.
王雄  张翀  李强 《生态学报》2023,43(2):719-730
探究黄土高原地区气象因子对植被覆盖的影响作用以丰富生态修复理论。基于黄土高原2001—2017年归一化植被指数(Normalized Difference Vegetation Index, NDVI)与气象数据,采用通径分析方法分别从时间和空间尺度上,分析黄土高原气温和降水对植被覆盖变化的直接及间接影响作用,为该地区生态建设提供科学依据。结果如下:黄土高原地区年际间植被明显波动增长,降水变化大体上与植被变化相似;降水整体较气温对植被覆盖变化的作用大。黄土高原植被与水热空间关系的最优分析尺度为80km,在80km空间尺度上,植被与气温有最大相关性,植被、降水由东南到西北递减,而气温分布规律不显著;降水整体呈现促进作用,气温的抑制作用较强,且空间差异明显。在时间与空间尺度上,植被主要受水热促进尤其是降水促进影响,且降水对植被生长的直接作用远大于通过气温的间接作用;不论生态区还是植被类型,气候因子作用均以促进类型为主,但存在明显差异。水热作用在时空尺度上具有明显空间差异性,不同地区影响植被变化的主控因子不同。  相似文献   

12.
黄土高原植被恢复成效及影响因素   总被引:4,自引:0,他引:4  
李婷  吕一河  任艳姣  李朋飞 《生态学报》2020,40(23):8593-8605
黄土高原是退耕还林还草工程背景下地表格局及植被变化最为显著的地区之一,评估黄土高原的植被恢复成效及影响因素是促进区域植被恢复政策优化的关键环节。基于不同时间尺度植被覆盖度和植被净初级生产力趋势变化,提出了量化区域植被恢复成效的新方法,采用结构方程模型研究社会经济因素对植被恢复成效的影响及其随时间产生的变化,通过地理加权回归探索气候和关键社会经济因子对植被恢复成效的空间非平稳影响。研究结果刻画了2000-2015年黄土高原植被恢复的持续改善过程:截止2015年,黄土高原88.20%的面积植被恢复成效明显,高值区集中于陕北地区及山西省各县区。农村劳动力的下降使得植被恢复所受人口压力减缓,负影响由-0.95变为-0.86;农业生产力的提升是黄土高原植被恢复成效改善的重要社会经济因素。气候及社会经济因子对黄土高原植被恢复成效的影响呈现显著的空间差异:多年平均降水对黄土高原东部29.30%的地区影响最大,且为促进作用,平均温度是北部和西部风沙草地植被恢复成效的主导影响因子(占总面积20.93%);黄土高原中西部47.02%的地区则受社会经济因素的影响更加明显。当前研究揭示了黄土高原的植被恢复效果及关键影响因子,可为区域植被恢复政策的优化提供科学支撑。  相似文献   

13.
水分利用效率(WUE)是研究陆地碳水循环耦合的有效指标,青藏高原是我国最重要的生态安全屏障,了解WUE的特征以及变化机制,对研究高原生态系统碳水循环和水资源合理利用有重要意义。本研究基于MODIS的总初级生产力(GPP)和蒸散发(ET)数据,分析青藏高原WUE的时空变化特征以及气候因子对WUE的影响。结果表明: 2001—2020年,在GPP和ET的共同作用下,青藏高原WUE呈上升趋势;WUE平均值较高的区域为高原东南部、东北部,低值区为高原中部。草地、沼泽、高山植被WUE呈增长趋势,灌丛、阔叶林、针叶林呈下降趋势。WUE与年均气温呈显著正相关,敏感性随着气温的升高而增加;WUE与年降水量呈非线性关系,降水量小于700 mm时,WUE对降水敏感性随着降水增加而减小,降水量大于700 mm,降水敏感性随着降水增加而增大。青藏高原超过75%的区域WUE与降水呈负相关,与气温相比,WUE受降水影响的面积更大,未来气候暖湿化将导致WUE降低。  相似文献   

14.
通过对黄土高原南北样带大面积(北纬34°05'—40°75'、东经107°14'—111°09')土壤含水量(0—500 cm剖面)测定和相应植被类型调查,研究了黄土高原农田、草地、灌木林地和乔木林地4种土地利用类型土壤含水量的空间变化及它们之间的差异性。结果表明:黄土高原4种土地利用类型的土壤含水量皆呈现南北向地带性变化,自南向北土壤含水量有明显递减趋势,与多年平均降雨量、潜在蒸散量、土壤质地等的分布具有一致性;同一地点不同土地利用类型下土壤水分含量具有显著差异(农地草地灌木和乔木林地),不同植被类型根系分布、蒸散耗水量的不同是造成含水量差异性的原因。植被建设应遵循土壤水分分布规律,研究结果对黄土高原植被恢复建设具有一定参考价值。  相似文献   

15.
为了解雅鲁藏布江流域内植被变化对气候变化响应的时空差异性,引入重心模型,分析和探讨了2002-2014年雅鲁藏布江流域植被的变化特点与气候因子的相关性。结果表明,植被的NDVI(归一化植被指数,Normalized difference vegetation index)重心与降水重心年际迁移方向具有正相关性。雅鲁藏布江流域的月植被NDVI受前0-1月降水影响最大,而不同季节植被的NDVI对降水影响表现出一定的滞后性,其中春季和冬季的植被NDVI均与前一季的降水呈现正相关性。该流域中乔木、灌木对降水反应的滞后性比草本植物要大;生长季的温度变化与植被的生长具有相关性。植被NDVI与月均温的正相关性达到最大的时间段差异较大。因此,植被NDVI和气候因子间的时空异质性研究对于雅鲁藏布江流域的生态环境保护具有重要意义。  相似文献   

16.
黄土高原植被物候变化及其对季节性气候变化的响应   总被引:3,自引:0,他引:3  
受气候变化影响,全球范围内植被物候发生了显著变化,而目前针对不同植被分区类型下(荒漠草原区、典型草原区、森林草原区、落叶栎林区、落叶栎林亚区)植被物候变化及其对季节性气候变化响应的研究尚少。因此基于MODIS遥感归一化差值植被指数(MODIS NDVI:MOD13Q1)数据、中国植被区划数据及135个气象站点插值数据,利用Sen''s斜率估计、Hurst指数和高阶偏相关分析等方法,研究黄土高原2001-2018年植被物侯变化及其对季节性气候变化的响应。结果表明:(1)黄土高原植被生长季始期(SOS,Start of Growing Season)主要集中在第96-144天,子植被分区由西北向东南方向,逐渐呈现提前趋势,71.0%的像元植被SOS整体提前0-2 d/10a (α=0.05),且在未来一段时间66%的像元植被SOS继续呈现提前趋势;植被生长季末期(EOS,End of Growing Season)主要集中在第288-304天,各子植被分区植被EOS变化基本保持一致,87.6%的像元植被EOS整体延迟0-3 d/10a (α=0.05),且在未来一段时间有80%的像元植被EOS继续呈现推迟趋势。(2)黄土高原植被SOS主要受各季节温度的影响;当年春季降水导致植被SOS提前,主要分布在黄土高原中部;上年夏季和上年秋季降水增加会导致植被SOS推迟;当年春季、上年秋季和年初冬季的温度升高均会导致植被SOS提前;各子植被分区植被SOS对不同季节降水的响应存在差异,而对不同季节温度的响应具有一致性。(3)黄土高原植被EOS主要受各季节降水和秋季温度的影响;不同季节降水增加均会导致大部分植被EOS推迟;当年秋季温度导致整体区域植被EOS推迟,且各子植被区植被EOS对当年秋季温度响应具有一致性。该研究可为大尺度植被物候影响因素提供新的认识,也为植被适应未来气候变化提供借鉴。  相似文献   

17.
随着气候变化的加剧,干旱的频率、持续时间以及发生范围都越来越严重,探索植被光合对干旱的响应以及气象因子对植被光合的影响对于人们如何应对干旱具有重要意义。基于遥感的日光诱导叶绿素荧光(SIF)具有对干旱条件下区域植被光合作用进行早期监测和准确评估的潜力。本研究基于星载SIF和标准化降水蒸散发指数(SPEI)研究了黄土高原地区2001—2017年生长季内(4—10月)植被光合作用对干旱的响应关系及其受气象因子的影响程度。结果表明: 黄土高原地区植被生长季内SIF与SPEI呈显著正相关关系的区域占比为87.8%,其中,半干旱地区植被光合对干旱的响应较敏感,半湿润地区敏感性较低。不同类型植被光合对干旱的响应存在差异,草地对干旱响应的敏感性最高,响应最强的SPEI时间尺度为3~4个月;林地的敏感性最低,SPEI时间尺度为3~10个月。气象因子与SIF存在显著的相关关系,其中,温度和降雨是影响黄土高原植被光合的重要影响因子,光合有效辐射的影响模式与温度相似。黄土高原地区生长季内不同的气候和植被类型条件下,植被光合所受干旱及各气象因素的影响存在较大差异。  相似文献   

18.
植被生长与气候存在着不对称的时间关系, 考虑气候因子对植被生长的时间效应可为准确理解植被与气候关系、预测植被对全球气候变化的动态响应提供重要科学依据。该研究基于MODIS归一化植被指数(NDVI)、气候以及植被类型数据, 通过构建气候与植被NDVI之间的4种时间效应方程, 揭示了气候因子对青藏高原植被生长的时间效应以及影响植被生长的主导因子。在4种时间效应中, 同时考虑气候滞后和累加效应对植被生长的解释度最高(47%), 相比于不考虑时间效应, 其解释度可整体提高4%-18%; 同时考虑气候滞后和累加效应时, 青藏高原有超过43%的区域受时间滞后与累加联合效应的影响, 只受时间累加效应或滞后效应影响的区域面积次之, 而不受时间效应影响的区域面积最小; 青藏高原NDVI与降水的偏相关性整体上高于其与气温的偏相关性, 其中降水占主导地位的区域主要分布在青藏高原东北部和西南部, 面积占比约为40.1%, 而气温占主导地位的区域集中在青藏高原中部和东南部, 面积占比约为29.7%。  相似文献   

19.
地理数据和遥感数据的长期序列中包含噪声和周期性波动信息。本研究基于ICEEMDAN方法对黄土高原1982—2015年归一化植被指数(NDVI)、降雨和温度进行逐像元分解,分解后得到的残差项减少了原始数据中的噪声和周期性波动,并利用残差项研究NDVI的变化趋势以及NDVI与气候因子之间的关系。结果表明: 1982—2015年,黄土高原NDVI以上升为主,残差项NDVI变化趋势的显著性(95.9%)大于原始NDVI变化趋势的显著性(72.3%),并且存在一定的空间差异性。温度和降雨的变化可以在很大程度上解释植被覆盖的变化。其中,温度与黄土高原NDVI之间呈极显著正相关的区域占83.7%,极显著负相关区域占13.9%;降雨与黄土高原NDVI之间呈极显著正相关的区域占54.4%,极显著负相关区域占37.2%。黄土高原植被对气候变化的响应存在明显的空间差异性,不同气候因子对不同植被覆盖类型的影响程度不同。总体上,黄土高原生长季不同植被与温度之间的相关性强于降水,温度是影响黄土高原植被覆盖变化的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号