首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hammerhead ribozymes are considered to be potential therapeutic agents for HIV virus because of their site-specific RNA cleavage activities. In order to elucidate structure--function relationship and also to hopefully endow ribozymes with resistance to ribonucleases, we firstly synthesized chimeric DNA/RNA ribozymes in which deoxyribonucleotides were substituted for ribonucleotides at noncatalytic residues (stems I, II, and III). Kinetic analysis revealed that (i) DNA in the hybridizing arms (stems I and III) enhanced the chemical cleavage step. (ii) stem II and its loop do not affect its enzymatic activity. Secondly, we introduced deoxyribonucleotides with phosphorothioate linkages to the same regions (stems I, II, and III) in order to test whether such thio-linkages further improve their resistance to nucleases. Kinetic measurements revealed that this chimeric thio-DNA/RNA ribozyme had seven-fold higher cleavage activity (kcat = 27 min-1) than that of the all-RNA ribozyme. In terms of stability in serum, DNA-armed ribozymes gained about 10-fold higher stability in human serum but no increase in stability was recognized in bovine serum, probably because the latter serum mainly contained endoribonucleases that attacked unmodified catalytic-loop regions of these ribozymes. Thirdly, in order to protect them from endoribonucleases, three additional modifications were made at positions U7, U4 and C3 within the internal catalytic-loop region, that succeeded in gaining more than a hundred times greater resistance to nucleases in both serums. More importantly, these catalytic-loop modified ribozymes had the comparable cleavage activity (kcat) to the wild-type ribozyme. Since these chimeric thio-DNA/RNA ribozymes are more resistant to attack by both exonucleases and endoribonucleases than the wild-type all-RNA ribozymes in vivo and since their cleavage activities are not sacrificed, they appear to be better candidates than the wild type for antiviral therapeutic agents.  相似文献   

2.
3.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

4.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettesin vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozymein vitro andin vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave caspase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiencyin vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activityin vivo, almost to 65%, though it has lower cleavage activityin vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently express and downregulate the level of caspase-3in vivo, and the ribozyme could provide an alternative approach to the research into the mechanism of apoptosis and human gene therapy also.  相似文献   

5.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettes in vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozyme in vitro and in vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave cas-pase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiency in vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activity in vivo, almost to 65%, though it has lower cleavage activity in vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently expre  相似文献   

6.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettesin vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozymein vitro andin vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave caspase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiencyin vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activityin vivo, almost to 65%, though it has lower cleavage activityin vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently express and downregulate the level of caspase-3in vivo, and the ribozyme could provide an alternative approach to the research into the mechanism of apoptosis and human gene therapy also.  相似文献   

7.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

8.
Due to their mode of action, ribozymes show antisense effects in addition to their specific cleavage activity. In the present study we investigated whether a hammerhead ribozyme is capable of cleaving mutated Ki-ras mRNA in a pancreatic carcinoma cell line and whether antisense effects contribute to the activity of the ribozyme. A 2[prime]-O-allyl modified hammerhead ribozyme was designed to cleave specifically the mutated form of the Ki- ras mRNA (GUU motif in codon 12). The activity was monitored by RT-PCR on Ki- ras RNA expression by determination of the relative amount of wild type to mutant Ki-ras mRNA, by 5-bromo-2[prime]-deoxy-uridine incorporation on cell proliferation and by colony formation in soft agar on malignancy in the human pancreatic adenocarcinoma cell line CFPAC-1, which is heterozygous for the Ki-ras mutation. A catalytically inactive ribozyme was used as control to differentiate between antisense and cleavage activity and a ribozyme with random guide sequences as negative control. The catalytically active anti-Ki-ras ribozyme was at least 2-fold more potent in decreasing cellular Ki-ras mRNA levels, inhibiting cell proliferation and colony formation in soft agar than the catalytically inactive ribozyme. The catalytically active anti-Ki-ras ribozyme, but not the catalytically inactive or random ribozyme, increased the ratio of wild type to mutated Ki-ras mRNA in CFPAC-1 cells. In conclusion, both cleavage activity and antisense effects contribute to the activity of the catalytically active anti-Ki-ras hammerhead ribozyme. Specific ribozymes might be useful in the treatment of pancreatic carcinomas containing an oncogenic GTT mutation in codon 12 of the Ki-ras gene.  相似文献   

9.
《Biomolecular engineering》1999,16(6):183-189
The activity of hammerhead ribozymes in S. cerevisiae was assessed using two ribozymes that were designed to intramolecularly attack the hepatitis B viral X mRNA. The ribozymes effectively suppressed the expression of the X-lacZ fusion gene, when they were inserted at the 5′ end of the X mRNA. The ribozymes cleaved the target RNA efficiently at the targeted phosphodiester bond, but the inactive mutants carrying G5-to-A substitution in the core did not, as the total RNA preparations of yeast extracts was assayed by primer extension. These G5A mutants, however, exerted the suppression as effectively as the wild-type ribozymes. The results, with several mutations introduced to a ribozyme, suggested that either mere formation of hammerhead-like structures with the three stems, or the formation of any two stems, could inhibit translation. Thus, the hammerhead-like structures, leading to cleavage or not, could effectively suppress translation, especially when formed around the initiation codon. The G5-to-A and U7-to-G mutations and replacement of the stem-II hairpin tetraloop did not appear to affect the formation of the inhibitory structure(s). The inhibition that was observed when stems I and III were directly connected without a loop or with a stem II hairpin was completely relieved when they were connected with only the loop of stem II (not containing the stem portion).  相似文献   

10.
 借助计算机软件分析 ,设计出能特异性切割HPV11型 6 4 4ntE2mRNA的核酶 (ribozyme) .遵循Symon′s锤头状核酶结构和GUX剪切位点原则 ,靶序列存在 32个这样的剪切位点 .通过计算机软件分析出核酶的最佳剪切位点 ,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析 ,筛选出 2个锤头结构核酶 .针对这两位点设计的核酶分别命名为RZ2 777和RZ32 81.计算机分析显示 ,两核酶与底物切点两翼碱基形成锤头状结构 ,切点所在基因序列具有相对松弛的二级结构 ,位于该基因重要生物功能区内 ,是核酶的理想攻击区域 .通过基因库检索 ,在已知人类基因排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性 .将两核酶用于体外剪切实验取得了良好的实验结果 ,认为借助计算机分析可帮助尽快从多个剪切位点选择出最适核酶  相似文献   

11.
Ribozyme mediated destruction of RNA in vivo.   总被引:38,自引:3,他引:35       下载免费PDF全文
Previous studies have demonstrated that high ribozyme to substrate ratios are required for ribozyme inhibitory function in nuclear extracts. To obtain high intracellular levels of ribozymes, tRNA genes, known to be highly expressed in most tissues, have been modified for use as ribozyme expression cassettes. Ribozyme coding sequences were placed between the A and the B box, internal promoter sequences of a Xenopus tRNAMet gene. When injected into the nucleus of frog oocytes, the ribozyme tRNA gene (ribtDNA) produces 'hammerhead' ribozymes which cleave the 5' sequences of U7snRNA, its target substrate, with high efficiency in vitro. Oocytes were coinjected with ribtDNA, U7snRNA and control substrate RNA devoid of a cleavage sequence. It was found that the ribtRNA remained localized mainly in the nucleus, whereas the substrate and the control RNA exited rapidly into the cytoplasm. However, sufficient ribtRNA migrated into the cytoplasm to cleave, and destroy, the U7snRNA. Thus, the action of targeted 'hammerhead' ribozymes in vivo is demonstrated.  相似文献   

12.
A model system to examine the expression and antiviral activity of trans-acting ribozymes in mammalian cells has been developed and evaluated. Hairpin ribozymes were engineered to cleave a specific site, identified by a combinatorial activity-based selection method, within genomic and subgenomic RNA species of Sindbis virus. Transiently transfected cells expressed moderate levels of ribozyme (approximately 50,000 molecules/cell) with predominant nuclear localization and a short half-life (23 min). Stable cell lines expressed ribozymes at modest levels (approximately 2,000 molecules/cell). Ribozyme-mediated RNA cleavage activity was detected in cell extracts. Clonal cell lines were challenged with recombinant Sindbis virus, and viral replication was examined using plaque formation and green fluorescent protein assays. Significant inhibition of viral replication was observed in cells expressing the active antiviral ribozyme, and lower levels of inhibition in control cells expressing inactive or irrelevant ribozymes. These findings are consistent with a model in which inhibition of viral replication occurs via ribozyme cleavage of viral RNAs, suggesting that ribozymes may represent useful antiviral agents.  相似文献   

13.
Kinetics of hairpin ribozyme cleavage in yeast.   总被引:3,自引:1,他引:2       下载免费PDF全文
Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A).  相似文献   

14.
Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate.  相似文献   

15.
The activity of hammerhead ribozymes in S. cerevisiae was assessed using two ribozymes that were designed to intramolecularly attack the hepatitis B viral X mRNA. The ribozymes effectively suppressed the expression of the X-lacZ fusion gene, when they were inserted at the 5' end of the X mRNA. The ribozymes cleaved the target RNA efficiently at the targeted phosphodiester bond, but the inactive mutants carrying G5-to-A substitution in the core did not, as the total RNA preparations of yeast extracts was assayed by primer extension. These G5A mutants, however, exerted the suppression as effectively as the wild-type ribozymes. The results, with several mutations introduced to a ribozyme, suggested that either mere formation of hammerhead-like structures with the three stems, or the formation of any two stems, could inhibit translation. Thus, the hammerhead-like structures, leading to cleavage or not, could effectively suppress translation, especially when formed around the initiation codon. The G5-to-A and U7-to-G mutations and replacement of the stem-II hairpin tetraloop did not appear to affect the formation of the inhibitory structure(s). The inhibition that was observed when stems I and III were directly connected without a loop or with a stem II hairpin was completely relieved when they were connected with only the loop of stem II (not containing the stem portion).  相似文献   

16.
Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell.  相似文献   

17.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

18.
Previously, suppression of the S100A4 mRNA by an endogenously expressed ribozyme in osteosarcoma cells was shown to inhibit their metastasis in rats. As a prelude to performing similar studies with exogenous, synthetic ribozymes, we compared a series of hammerhead ribozymes targeted against different sites in the mRNA. The ribozymes differed only in the 7-base flanking sequences complementary to the substrate and were protected against nucleases by chemical modification. Cleavage efficiency varied widely and was not obviously related to the predicted secondary structure of the target RNA. The most active ribozyme of the series was chosen for further optimization. Lengthening its flanking sequences was counterproductive and reduced cleavage even when using excess ribozyme. Using excess substrate (multiple-turnover kinetics), cleavage was fastest with the (6+8) ribozyme having 6 nucleotides (nt) in stem III and 8 nt in stem I. Although these stems strongly influence ribozyme performance, their optimization is still empirical. Faster cleavage was obtained by adding facilitator oligonucleotides to ribozymes with shorter stems of (6+6) and (5+5) nt. Stimulation was particularly strong in the case of the (5+5) ribozyme, which was poorly active by itself. The enhancement caused by different facilitator oligonucleotides paralleled their expected ability to hybridize to RNA as a function of length and chemical modification.  相似文献   

19.
Cleavage of specific sites of RNA by designed ribozymes   总被引:18,自引:0,他引:18  
M Koizumi  S Iwai  E Ohtsuka 《FEBS letters》1988,239(2):285-288
Two ribozymes were designed for site-specific cleavage of RNA. A UA site in an undecaribonucleotide was cleaved by a ribozyme consisting of two partially paired oligoribonucleotides with chain lengths of 19 and 15. The other ribozyme, which consists of a 19-mer and a 13-mer, recognized a UC sequence at positions 42 and 43 of 5 S rRNA.  相似文献   

20.
借助计算机软件分析,设计出能特异性切割HPV11型644nt型644ntE2mNA的核酶。遵循Symons锤头状核酶结构和GUX剪切位点原则,靶序列存在32个剪切位点,通过计算机软件分析核酶的最佳剪切位点,并对底物及核酶的二级结构进行预测及进行相应基因生物学功能和基因同源性分析,筛选出2个锤头结构核酶。针对这两位点设计的核酶分别命名为RZ277和RZ3281。计算机分析显示,两核酶与底物切点两翼碱基形成锤头状结构,切点所在基因序列具有相对松驰的二级结构,位于该基因重要生物功能区内,是核酶的理想攻击区域,通过基因库检索,在已知人类基因中排除了与上述两核酶切点两翼碱基有基因同源性序列的可能性。并非所有的GUX位点(X:C、U、A)或CUX均可作为核酶的最佳剪切切割反应,为下一步将核酶用于细胞内和体内试验打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号