首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用15N稀释法研究小麦接种肺炎克雷伯氏菌(Ktebsiella pneumoniae)43菌株的联合固氮作用。在小麦种子萌动后播种于土盆中,用43菌株接种,定苗后每盆施人15N丰度为30%的标记硫酸铵25rag,培育70d后测定根、茎的干物质重、含氮量和15N%原子趣,并用乙炔还原法测定根系存在的固氮酶活性。结果表明,小麦根系存在固氮有机体,直接为植株提供氮素占其总氮量的15.3—22.1%,干物质重和15N%含量与对照相比差异显著。  相似文献   

2.
利用15N稀释法研究小麦接种肺炎克雷伯氏菌(Ktebsiella pneumoniae)43菌株的联合固氮作用。在小麦种子萌动后播种于土盆中,用43菌株接种,定苗后每盆施人15N丰度为30%的标记硫酸铵25rag,培育70d后测定根、茎的干物质重、含氮量和15N%原子趣,并用乙炔还原法测定根系存在的固氮酶活性。结果表明,小麦根系存在固氮有机体,直接为植株提供氮素占其总氮量的15.3—22.1%,干物质重和15N%含量与对照相比差异显著。  相似文献   

3.
用卡那霉素盒(Kmr-cassette)插入法,对巴西固氮螺菌(Azospirillum brasilense)Yu62的draTG基因及其下游区域进行了诱变,并获得相应的突变株。研究表明:draT变突株的固氨酶活性不再受铵抑制,而draG突变株在有铵时则丧失固氮酶活性,但当铵耗尽后却不能像野生型菌株那样恢复活性。draTG下游区域突变株YZ4(突变位点距draG约2kb)在无氮及限铵条件下,其固氮酶活性比野生型菌株的高,但其nifH-lacZ转录融合子的表达并不受影响,说明该区域可能有参与固氮酶活性水平调控的基因。  相似文献   

4.
四株红树林促生菌的遗传分析鉴定及其促生能力   总被引:2,自引:1,他引:1  
陆俊锟  陈俊  康丽华 《微生物学报》2010,50(10):1358-1365
【目的】鉴定四株供试菌株的种属地位,了解菌株所具有的促进植物生长能力。【方法】运用nifH与16S rRNA基因序列对供试菌株进行遗传分析,采用钼锑抗比色法和乙炔还原法分别测定菌株的溶磷、固氮能力。通过接种试验验证菌株促进红树植物生长的能力。【结果】通过对菌株nifH与16S rRNA的同源性、系统发育树分析,HN011与需钠弧菌(Vibrio natriegens)的相似性最高,SZ7-1、SZ7-2与产酸克雷伯氏菌(Klebsiella oxytoca)的相似性最高。而SZ002在16S rRNA的系统发育分析中归属为类芽孢杆菌属(Paenibacillus sp.),却在nifH基因分析中与克雷伯氏菌(Klebsiella sp.)的相似性最高。供试菌株都具有较强的溶磷能力和高固氮酶活性。接种后植株有较好的生长表现,部分接种植株在干重、全氮、全磷含量等方面较对照有显著地增加(P0.05)。【结论】首次发现兼具溶磷-固氮两种能力的红树林植物促生菌,接种试验也表现菌株具有良好的促生能力,为红树林人工接种促生菌的应用提供了可靠的理论依据。  相似文献   

5.
对一株能转化D,L-对羟基苯乙内酰脲为D-对羟基苯甘氨酸的菌株MMR003进行了细菌分类学鉴定,该菌为皮氏伯克霍尔德氏菌(Burkholderia pickettii)。实验通过Southern杂交,部分文库构建和筛选,并经一系列亚克隆测序分析,获得一长度为1374bp的完整开放阅读框,编码458个氨基酸的D-乙内酰脲酶基因。用该基因序列构建的高表达质粒pXZPH2转化E.coliBL21(DE3),经IPTG诱导后,检测到D-乙内酰脲酶活性。该基因编码的氨基酸序列经Blast同源比较分析与放射形土壤杆菌NRRL B11291所产相应酶有85%的同源性。以D,L-对羟基苯乙内酰脲为底物测得的表达酶的活力为0.66u/mL,比相同条件下所测出发菌株MMR003的酶活提高了2倍。  相似文献   

6.
固氮螺菌耐高铵突变株的选育   总被引:1,自引:1,他引:0  
应用亚硝基脏(N-nitrosoguanidine,NTG)诱变剂对固氮螺菌菌株Ma241、Ma99、Sp7和G14进行诱变处理后,在掭加了铵的类似物乙撑二胺(ethyleae diamina)的D6bcreiner无氯培养基中进行筛选.反复纯化,获得了在4 5 n、M NH}浓度以上,保持固氯酶活性的耐铵突变株共9株。突变株22的耐铵固氮酶活性最强,在75mM NH+4浓度下,固氮酶活性达到464n mol乙烯/mg蛋白·小时,在200m M NH+4浓度下,固氯酶话性仍有32nmol/mg蛋白·小时。  相似文献   

7.
海洋固氮菌和解磷菌的分离鉴定及发酵条件优化   总被引:1,自引:0,他引:1  
【目的】从西沙喜盐草根际沉积物中分离纯化得到具有高效固氮能力及解磷能力的菌株。优化其发酵培养条件,研究其制备海洋微生物菌剂的可能性。【方法】从形态学特征、生理生化、16S rDNA及功能基因水平进行鉴定,通过乙炔还原法、钼锑抗显色法检测菌株的固氮酶活性和解磷能力,单因素法和响应面法优化其发酵培养条件,溶血试验和急性毒性实验鉴定菌株的安全性。【结果】结果表明,菌株AZ16属于星箭头菌(Sagittula stellate),革兰氏阴性菌,选择性固氮培养基中菌落呈黄圆形黏稠状,固氮酶活性达34.63 nmol C2H2/(mL·h),最适生长条件为:盐度25‰、pH 7.5、温度33°C、接种量5.0%;菌株XT37为海洋芽孢杆菌(Bacillus sp.),革兰氏阳性菌,选择性固氮培养基中菌落呈深黄色圆形褶皱,植酸酶活性达239.49μg/L,最适合生长条件为:盐度25‰、pH 6.7、温度28°C、接种量5.0%。溶血实验和急性毒性实验证明两株菌属实际无毒级别。【结论】两株菌具有高效的固氮解磷功能,以及抗高盐、强碱等环境的能力,安全无毒,因此有潜力应用于多功能混合微生物菌剂的研制。  相似文献   

8.
本文研究了固氮螺菌(Azosptrillum brastlense)的放氢现象和吸氢酶活性以及与固氮作用的关系。测定了57株固氮螺菌的放氢现象及其固氮酶活性,其中不放氢41株,微放氢14株,其放氢量为2·63—31.00n mol C2H4/ml菌液·小时。放氢量较多的2株R38{和R256A都是从水稻根表上分离获得,其放氢量分别为185.75n mol H2/ml 菌液·小时和547.00 moIH2/ml 菌液·小时。测定了53株螺菌的吸氢酶活性,它们均具有吸氢能力,其吸氢量各异,0-63-27·38n mol H2/ml菌液。小时。生长在含有NH4CI培养基上的固氮螺菌既没有固氮能力,也不产氢。在无氮培养基上所产生的氢是固氮过程中放出的氢。实验结果指出,C2H2抑制氢酶的活性。当吸氢的菌株与放氢菌株混合培养时,其固氮酶活性比单株纯培养高,有氢存在时,固氮酶活性比不加氢时高。  相似文献   

9.
通过三亲本杂交将质粒pCK3{携带改变了启动子的肺炎克氏杆菌(Klebsiella pneuma-niae)nifA 基因]引入巴西固氮螺菌(Azospirillum brasilense)Yu62菌株中,由此获得的转移接合子巴西固氮螺菌Yu62-4菌株在6.0 mmol/L以上NH+4浓度下,能表现出微弱的固氮酶活性(相当于无NH+4时活性的0.3-0.5%),而野生型Yu62则全部丧失固氮酶活性。固氯酶的丙烯酰胺凝胶电泳和铁蛋白的免疫杂交实验表明,转移接合子Yu62-4在高NH+4(50mmol/L)下,虽有铁蛋白合成,但合成量比无NH+4时少得多,而且有一部分铁蛋白未被共价修饰;野生型菌株Yu62在此NH+4浓度下无铁蛋白合成。实验结果表明:外源(来自肺炎克氏杆菌)的基因产物在巴西固氮螺菌Yu62中不能有效地解除NH+4对该菌固氮酶合成的阻遏作用。本文分析了出现这种现象的原因。  相似文献   

10.
水稻根际联合固氮细菌的研究   总被引:5,自引:0,他引:5  
从我国南方水稻根部分离到3株氧化型革兰氏阴性细菌,编号为A1601,A1701和A1702。经15N示踪实验证明,它们均有较高的固氮能力。在无氮培养基中加入少量稻根浸出液进行培养后,可使固氮酶活性明显提高。根据菌株的形态和生理生化等特征鉴定,3株菌均为产孽菌属的细菌,分别为争论产碱菌(Alcaligenes paradoxus A1601),反硝化产碱蔺木糖氧化亚种(Alcaligenes denitrificans subsp.xylosoxydons A1701)和反硝化产碱菌反硝化亚种(Alcaligenes denitridicans subsp.denitrificans A1702)。这是继粪产碱菌(Alcaligenesfaecalis)之后,发现的产碱菌属中另外3株未见报道的固氮细菌。  相似文献   

11.
在巴西固氮螺菌 (Azospirillumbrasilense)中 ,glnB和glnZ是两个高度同源基因 ,分别位于 3 7kb EcoRI+PstI和 3 7kb SalI的两个不同的染色体片段上。用卡那霉素盒 (Kmr cas sette)插入法 ,对glnB和glnZ分别进行定位诱变 ,并获得相应的突变株 ,即glnB- 和glnZ- 。研究表明 ,glnB- 突变株丧失固氮酶活性 ,表现为Nif- ,而glnZ- 象野生型菌株一样具有固氮酶活性。为了进一步研究这两个基因的功能 ,将glnB和glnZ分别构建在pVK1 0 0载体上形成重组质粒pVK -Ⅱ和pVK -Z ,对glnB- 和glnZ- 突变株进行互补实验 ,进一步证明了glnB与固氮酶活有直接相关性 ,而glnZ无此作用。同时 ,通过三亲接合法将pVK -Ⅱ和pVK -Z分别转移到巴西固氮螺菌野生型Yu62和具有一定抗铵能力的draT- 突变株中 ,使glnB和glnZ的拷贝数增加 ,进一步比较它们的固氮酶活性。结果表明多拷贝的glnB基因 ,能显著提高固氮酶活性 ,而多拷贝的glnZ对固氮酶活性无影响。同时 ,将pVK Ⅱ和pVK -…  相似文献   

12.
本文研究了在好气条件下,在以谷氨酸为氮源的液体培养基中,固氮螺菌(Azospirllumbrasilense)Yu62固氮酶形成的条件及溶氧压对固氮酶活性的影响。厌氧使整体细胞固氮酶迅速失活;而见氧后固氮酶又重新恢复活性。Western blotting实验证实,这种可逆失活的分子基础,是由于固氮酶铁蛋白-亚基被修饰和去修饰。呼吸抑制剂KCN对固氮酶活性的抑制,亦是由于固氮酶铁蛋白被修饰。因此推论细胞内的能量状态可能是启动固氮酶活化酶系统的重要信号。谷氨酰胺合成酶的抑制剂MSX不能去除厌氧和KCN引起的抑制作用。结果表明:固氮酶活性的NH+4和厌氧关闭可能通过不同的机制起作用。  相似文献   

13.
超慢生型大豆根瘤菌的生理生化和共生特性的研究   总被引:4,自引:2,他引:2  
超慢生型大豆根瘤菌(ESG,extra—slow-gfowing soybean rhizobium)是不同于大豆另两类共生体——慢生型大豆根瘤菌(Bradyhizobium,japonicum)和快生型大豆根瘤菌(Sin-orhizobium fredii)的新类群。它们在生长速率和生理学特性等方面均表现出较大的差异。根瘤类菌体的扫描结果表明,ESG的类菌体形态为杆状,与另外两群相近,但发现有“Y”形类菌体。ESG利用碳源范围较窄,抗生素自然耐受性比慢生型低,在柠檬酸盐培养基上不生长;代时超长,已测定的7个菌株代时为23.3-41.9h。细胞成分N,c分析结果表明,ESG在三个类群中N含量最高,C含量最低。温室盆栽试验证明ESG中大部分菌株的固氮酶活性和植株含氮量与生产用菌株相当。ESG菌株可以在绿豆上结瘤并有固氮酶活性。  相似文献   

14.
该文对文冠果(Xanthoceras sorbifolia)根系内生菌的种类和固氮活性进行了首次报道。试验以田间栽培的文冠果一、二年生植株为材料, 以Ashby和YMA为培养基, 对根系内生菌进行了分离, 通过对菌落形态的观察, 划线挑取单菌落培养, 并对7个代表性的单菌落进行扩大培养, 提取其DNA, 采用细菌16S rDNA通用引物序列进行PCR扩增, 胶回收、测序后, 进行Blast比对分析。试验结果表明: YMA培养基上的菌落数量和种类均明显多于Ashby培养基上的菌落。田间一年生文冠果与田间二年生文冠果的根系内生菌情况存在差异。一年生文冠果的根系内生菌数量与种类略多于二年生文冠果。一年生文冠果根系中分离得到的主要内生菌为成团泛菌(Pantoea agglomerans)、根癌土壤杆菌(Agrobacterium tumefaciens)和产酸克雷伯菌(Klebsiella oxytoca)等; 田间二年生文冠果根系中分离得到的主要内生菌为假单胞菌属(Pseudomonas)细菌。固氮活性测定结果表明, 在所分离的7个菌株中, 6个测到了固氮酶活性, 其中鉴定为产酸克雷伯菌的菌株固氮酶活性显著高于其他菌株, 达到9.688 nmol·mg-1·h-1, 为文冠果固氮菌肥的菌种的筛选奠定了基础。  相似文献   

15.
糖蜜草(Melinis minutiflora Beauv.)是热带地区的一种优良牧草。采用选择性培养基在厌氧和好氧两种培养条件下,从糖蜜草根、茎中都可分离得到具有较强固氮酶活性的菌株。通过SDS-PAGE全细胞蛋白电泳技术快速聚类分析表明,来源于糖蜜草中的菌株为同一类群。16S rDNA序列分析和总DNA的G+c%含量进一步确定糖蜜草中所分离的菌株属于固氮螺菌属(Azospirillum),与产脂固氮螺菌(Azospirillum lipoferum)亲缘关系较近。BIOLOG板测定结果显示,糖蜜草菌株TMCY243对多种碳源具有很强的适应性,与产脂固氮螺菌(A.lipoferum)的模式菌株DSM 1691存在着较大的差异。以上结果表明,糖蜜草内生固氮菌为固氮螺菌属的一个新类群。  相似文献   

16.
诺卡氏菌属的两个新种和一个新变种   总被引:1,自引:0,他引:1  
自北京、云南和广西的土样中,分离出1.128 4、10.268-1和22.29-p三株诺卡氏菌。该菌株均产生具分隔并断裂的基丝,细胞壁化学组分为IV型。在形态、培养特征和生理生化特性方面,与诺卡氏菌属中的已知近似种明显不同。因此,认为菌株1.128 a和10.268—1为该属中的两个新种,分别命名为褐色诺卡氏菌(Nocardia fusca n. sp.)和黄粉色诺卡氏菌(Nocardia flavarosea n. sp.),菌株22.29-p为一新变种,命名为黄粉色诺卡氏菌褐色变种(Nocardiaflavorosea var. fusca n. var.)。  相似文献   

17.
藤县药用野生稻内生固氮菌分离鉴定及系统发育分析   总被引:1,自引:0,他引:1  
从广西梧州市藤县药用野生稻中筛选内生固氮菌,为微生物肥料生产收集菌种资源。采用3种无氮培养基经平板划线法筛选内生固氮菌;通过乙炔还原法测定其固氮酶活性;利用IS-PCR(Insertion sequence-based PCR)指纹图谱和全细胞蛋白电泳图谱对获得的内生固氮菌进行聚类分析;根据16S r RNA基因序列分析确定其进化关系;使用分光光度计比色法检测其产生长素能力、产铁载体能力、溶磷能力和ACC脱氨酶活性。结果显示,从野生稻中筛选获得34株内生固氮菌分为5个类群,类群I和II各有8株,类群III、IV、V分别有2株、5株和11株,其固氮酶活性介于5.0和1 036.7 nmol/(m L·h)之间。类群I代表菌株HU33与无乳固氮螺菌(Azospirillum amazonense ATCC 35119T)相似性为97.13%;类群II代表菌株HU31与变栖克雷伯氏菌(Klebsiella variicola DSM 15968T)相似性为99.71%;类群III代表菌株HU17与蒙氏假单胞菌(Pseudomonas monteilii ATCC 700476T)相似性为99.86%;类群IV代表菌株HU13与黄黄色杆菌(Xanthobacter flavus ATCC 35867T)相似性为100%;类群V代表菌株CM05与越南伯克霍尔德菌(Burkholderia vietnamiensis LMG 10929T)相似性为99.86%。药用野生稻内生固氮菌资源具有遗传多样性;有些菌株有较强的产生长素、产铁载体、ACC脱氨酶活性和溶磷能力,在农业生产上具有一定的应用潜力;类群I可能是一个新类群。  相似文献   

18.
诺卡氏菌属中的两个新种   总被引:1,自引:0,他引:1  
由土壤中分离的两株诺卡氏菌形放线菌A-100菌株和186菌株.经鉴定,其形态和细胞壁化学组分均属诺卡氏菌属,但培养特征和生理生化特性与该属中的已知种不同。因此认为这两株菌是诺卡氏菌属中的两个新种,并分别命名为鲜黄诺卡氏菌Nocardia galba n.sp和绛红色诺卡氏菌Nocardia purpurea n. sp.。  相似文献   

19.
德克斯氏菌属的一个新种   总被引:5,自引:0,他引:5  
从水稻的种子上分离出编号为7954的菌株。该菌株细胞杆状,单生或成对排列,革兰氏阴性,以周生鞭毛运动,细胞内有许多聚β-羟基丁酸盐颗粒,不形成孢囊,无芽孢。细胞外含有大量浓稠坚韧的胶状物质,呈淡黄色至淡暗棕褐色。需氧性,营呼吸代谢,接触酶阴性。马铃薯块上生长差、薯块不变色,还原硝酸盐,有固氮酶活性。12—42℃范围内生长,最适生长温度为32—35℃;PH5.3—9.5内生长,最适生长pH 6.8—7.9。DNA中的G+c克分子含量为74.3±0.12%,与胶德克斯氏菌的DNA体外杂交的同源性为54%,经鉴定认为菌株7954是德克斯氏菌属(Derxia)的一个新种,定名为周毛德克斯氏菌(Derxia peritricha sp.nov.Wu et Chen)o  相似文献   

20.
固氯螺菌(Azospirillum)是一类仅在限铵和微好氧条件下固氮的微生物,它可与许多禾本科作物联合共生⑴,具有较大的应用潜力。铵作为固氮作用的调节信号,在固氮螺菌的实际应用中是首要的限制因素。在固氯螺菌中,铵不但具有与肺炎克氏杆菌(Klebsiella pneumoniae)相似的阻遏固氮酶合成的作用,而且还对已合成的固氮酶进行活性调节⑵。研究表明,其固氮酶翻译后活性调节的机制类似于深红红螺菌(Rhodospirillum rubrum)⑶,即在有铵条件下其固氮酶铁蛋白的一个亚基被共价修饰而丧失活性,这一过程是可逆的。由于铵在固氮螺菌中双水平地调节固氮作用,使得在野生菌株中研究其固氮基因表达水平上的调节较为困难。Zhang等⑷利用区域定位诱变技术获得了巴西固氮螺菌Sp7(A.Brasilense Sp7)的draT-突变株,在该突变株中铵不再影响固氮酶的活性,这为其固氮基因表达调节的研究提供了一个良好的材料。本文将组成型表达的肺炎克氏杆菌nifA基围引入该突变株中,通过分析讨论铵对巴西固氮螺菌固氮基固表达的调节作用方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号