首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
The study population included employees of metal works, with significant exposure to lead (Pb) for about 20 years (mean blood lead level PbB = 43 μg/dl), divided into four groups: normotensive (Pb-normotensive), high-normotensive, first (HT-1), and second degree (HT-2) of hypertension. The control group comprised of 30 office workers with normal blood pressure and no history of occupational exposure to lead. In erythrocytes, the activity of antioxidant enzymes and lipid peroxidation (measured as concentration of malondialdehyde (MDA)) was estimated. MDA concentration, glutathione peroxide (GPx), and superoxide dimutase (SOD) activities were significantly higher in Pb-normotensive group when compared to the normotensive control. Body mass index, age, duration of exposure to lead, and PbB were higher in both hypertensive groups than in Pb-normotensive or high-normotensive groups. MDA increased in HT-1 group by 48% and in HT-2 by 72%, and the activity of GPx decreased significantly in HT-1 group, by 30% and in HT-2 by 43%. No significant differences were observed in their activity of SOD, catalase, and glutathione reductase in erythrocytes. Arterial blood pressure (both systolic and diastolic) positively correlated with body mass index (BMI), age, lead exposure duration, PbB, MDA, and negatively correlated with GPx. There was no significant correlation between BMI and MDA, BMI and GPx, age and MDA, AND age and GPx. In conclusion: (1) lead increases erythrocyte MDA concentration and the activity of GPx as well as SOD in normotensive subjects. (2) Among individuals exposed to lead, with arterial hypertension diagnosed, higher body mass index, age, values of blood lead level, and prolonged exposure to lead have been noticed, accompanied by intensified oxidative stress and the decrease in the activity of glutathione peroxidase in erythrocytes. The reasons for increase of blood pressure in lead exposure remain unrecognized.  相似文献   

2.
The aim of the study was to investigate simultaneously serum and milk malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, and antioxidant potential (AOP) in active-smoking, passive-smoking, and nonsmoking mothers and to search if there is any difference between serum and milk oxidant/ antioxidant status caused by smoking. According to their smoking status, 60 mothers (age range: 20–35 yr) were classified into one of three groups: the active-smoking mothers (n=15), the passive-smoking mothers (n=22), and the nonsmoking mothers (n=23). Serum and milk MDA, SOD, GPx, and AOP values were determined in mothers on the postpartum seventh day by the spectrophotometric method. Serum Zn and Cu concentrations were determined by atomic absorption spectrophotometry (AAS). There was no significant difference in serum samples with respect to MDA (p=0.17), SOD (p=0.51) and AOP (p=0.36) levels, but there was a significant difference in serum GPx (p=0.002) levels among the study groups. The significant differences were also found in milk samples in terms of MDA (p=0.002) and SOD (p=0.011), but not in GPx (p=0.11) and AOP (p=0.29) levels among the study groups. No significant difference was seen in serum zinc concentration (p=0.49), but copper concentration differed significantly among the groups (p=0.005). These observations suggest that human milk is more vulnerable to oxidative stress and lipid peroxidation than serum samples in smoking mothers, even if they are passive smokers.  相似文献   

3.
One hundred sixty-four adult male volunteers (29 controls [Group 1] and 135 combi drivers) enrolled in the study. The combi drivers were divided into three groups as nonusers of either Maras powder or cigarette (Group 2), smokers (Group 3), and users of Maras powder (Group 4). Blood lead levels (BLLs) were analyzed by atomic absorption spectrophotometer. BLL was detected as 2.8 ± 2.3 μg/dL in Group 1 (n = 29); however, it was 3.5 ± 1.6 μg/dL in Group 2 (n = 33), 3.8 ± 2.4 μg/dL in Group 3 (n = 62), and 3.9 ± 2.4 μg/dL in Group 4 (n = 40). BLL in Group 1 was found significantly lower than other groups (p < 0.05). The use of cigarette or Maras powder by the drivers did not give rise to a marked difference on the BLLs (p > 0.05). BLL of (combi) drivers was detected to be significantly higher than nondrivers; however, it was still under the hazardous level of 10 μg/dL announced by WHO. Although there are publications reporting that usage of tobacco increases the level of lead in blood, both smoking and use of Maras powder did not affect BLL markedly in our study. Poster presented (the abstract section published in Congress Book) at the 7th Congress of Turkish Family Physicians, 23–26 May 2006, Cesme-IZMIR, Turkey.  相似文献   

4.
In this article, the effects of increased light intensities on antioxidant metabolism during ex vitro establishment of Ulmus minor micropropagated plants are investigated. Three month old in vitro plants were acclimatized to ex vitro conditions in a climate chamber with two different light intensities, 200 μmol m−2 s−1 (high light, HL) and 100 μmol m−2 s−1 (low light, LL) during 40 days. Immediately after ex vitro transfer, the increase of both malondialdehyde (MDA) and electrolyte leakage in persistent leaves is indicative of oxidative stress. As the acclimatization continues, an upregulation of the superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activities were also observed. Simultaneously, MDA content and membrane permeability stabilized, suggesting that the antioxidant enzymes decrease the deleterious effects of reactive oxygen species (ROS) generation. Unexpectedly, newly formed leaves presented a different pattern of antioxidative profile, with high levels of MDA and membrane leakage and low antioxidant enzyme activity. Despite these differences, both leaf types looked healthy (e.g. greenish, with no necrotic spots) during the whole acclimatization period. The results indicate that micropropagated U. minor plantlets develop an antioxidant enzyme system after ex vitro transfer and that, in general, LL treatment leads to lower oxidative stress. Moreover, new leaves tolerate higher levels of ROS without the need to activate the antioxidative pathway, which suggests that the environment at which leaves are exposed during its formation determinate their ability to tolerate ROS.  相似文献   

5.
Statins and angiotensin-converting enzyme (ACE) inhibitors have beneficial impact on the serum cholesterol and blood pressure. It is supposed that statins and ACE inhibitors may modify the antioxidative status in erythrocytes. The study objective was to compare the effects of two treatments, lisinopril alone versus lisinopril plus simvastatin, on erythrocyte antioxidant enzyme activities. The study involved 32 patients with arterial hypertension, their initial serum total cholesterol, LDL-cholesterol and triglycerides were within the normal range. Patients of two groups, each of 16 subjects, were treated with lisinopril (10 mg/day) or with lisinopril (10 mg/day) plus simvastatin (20 mg/day). Before and after the ambulatory therapy for 3 and 6 months, activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR) were determined in purified erythrocytes. All treated patients had significantly higher catalase activity (by 79.3–106.5%, p < 0.0001) and significantly lower GPx activity (by 20.7–30.6%, p < 0.001) as compared to the baselines. The same results were obtained in both groups (lisinopril and lisinopril + simvastatin), after both periods (3 and 6 month) of treatments. SOD activity increased only in the lisinopril group and only after 6 months (p = 0.0345). No changes of GR activity were observed under all conditions studied. Thus, the lisinopril monotherapy and combined lisinopril plus simvastatin therapy exhibit specific, pronounced and equipotent effects on antioxidant enzymes in human erythrocytes. Peroral administration of lisinopril or lisinopril plus simvastatin may protect erythrocytes and other tissues against oxidative damage.  相似文献   

6.
The equilibrium between antioxidant function and oxidative stress is implicated in brain pathology. However, human studies on oxidant and antioxidant markers rely on postmortem tissue that might be affected by pre and postmortem factors. To evaluate the effect of these variables, we tested whether antioxidant enzymes [superoxide dismutase (SOD), catalase] glutathione (GSH) and related enzymes [gamma glutamylcysteine ligase (GCL), GSH peroxidase (GPx), GSH reductase (GR), GSH-S-transferase (GST)] and malondialdehyde (MDA, marker of lipid peroxidation) are affected in postmortem human brains (n = 50) by increase in postmortem interval (2.5–26 h), gender difference and agonal state [based on Glasgow coma scale (GCS): range: 3–15] in different anatomical regions-frontal cortex (FC), cerebellum (CB) medulla oblongata (MO), substantia nigra (SN) and hippocampus (HC). While SOD and catalase activities were relatively unaltered, GR and GPx activities were affected by agonal state (GR in CB, p < 0.05; GPx in MO, p < 0.05) indicating altered GSH dynamics during the secondary events following neuronal injury. MO, SN and HC displayed low GSH compared to FC and CB. Total GSH level was decreased with PMI (MO, p = 0.02) which could be partly attributed to increase in MDA levels with increasing PMI in MO (p < 0.05). Total GSH level was higher in CB (p < 0.017) and MO (p < 0.04) in female brains compared to males. Interestingly, HC and SN regions showed significant stability in most of the markers tested. We suggest that while SOD and catalase were relatively unaffected by the pre and postmortem factors, GSH and its metabolic enzymes were significantly altered and this was more pronounced in MO of postmortem human brains. These data highlight the influence of pre and postmortem factors on GSH dynamics and the inherent differences in brain regions, with implications for studies on brain pathophysiology employing human samples.  相似文献   

7.
Previously the authors have designed and synthesized a library of antioxidative glutathione analogues called UPF peptides which are superior to glutathione in hydroxyl radical elimination. This paper is a follow-up study which investigated the effects of the most promising members of the library (UPF1 and UPF17) on oxidative stress-related enzymes. At concentrations used in vivo experiments neither UPF peptide influenced the activity of glutathione peroxidase (GPx) when purified enzyme or erythrocyte lysate was used. At higher concentrations they inhibited GPx activity. UPF peptides had no effect on glutathione reductase (GR) activity. Also they, as well as glutathione itself, slightly increased MnSOD activity in human brain mitochondria and inhibited oxidative burst caused by neutrophil NAD(P)H oxidase. RT-PCR measurements showed that UPF1 and UPF17 have no effect on GPx and MnSOD expression level in human blood mononuclear cells. The results of this study confirm that investigated UPF peptides do not interfere with the enzymatic mechanisms of antioxidative defence and can be used as themselves or as a lead for the protector molecule design against excessive oxidative stress.  相似文献   

8.
The concentrations of cadmium, lead, selenium, and zinc in blood and seminal plasma were determined in 76 Singapore males. Except for zinc, the concentrations were generally higher in blood than in seminal plasma (cadmium, 1.31 μg/L vs 0.61 μg/L; lead, 82.6 μg/L vs 12.4 μg/L, and selenium, 163.6 μg/L vs 71.5 μg/L). The mean concentration of zinc in seminal plasma was more than 30 times higher than in blood (202 mg/L vs 6.2 mg/L). Significant positive correlations were found between the concentrations in blood and seminal plasma for the two essential trace elements: selenium (r=0.45,p<0.001) and zinc (r=0.25,p<0.05). However, no relationships were found between the concentrations in blood and seminal plasma for two toxic metals (cadmium and lead). Significant inverse correlations were observed between Cd and Zn (r=−0.40,p<0.01), and Pb and Se (r=−0.32,p<0.05) in blood, whereas significant positive correlations were noted between Cd and Se (r=0.45,p<0.01), Cd and Zn (r=0.35,p<0.05), and Se and Zn (r=0.57,p<0.001) in seminal plasma. The physiological significance of these relationships are also discussed in this paper.  相似文献   

9.
The present study was conducted to compare the trace elements and oxidative status between uremic patients with and without dementia. Chronic hemodialysis patients with dementia (n = 20) and without dementia (n = 25), and age-matched healthy volunteers (n = 20) were enrolled. The nutritional status, blood levels of trace elements aluminum (Al), zinc (Zn), copper (Cu), magnesium (Mg) and iron (Fe), malondialdehyde (MDA), and protein carbonyl production, antioxidant enzymes glutathione peroxidase (GPx), and glutathione reductase (GR) activities were measured. No significant difference in nutritional status or clinical characteristics was observed between nondementia and dementia patients. However, uremic patients with dementia have significantly higher Al, Cu, and Mg and lower Zn concentrations, as well as increased Cu/Zn ratio in comparison to nondementia patients. There were statistically significant increased MDA and carbonyl production and decreased GPx and GR activities in dementia patients. Furthermore, the significant associations of Al, Mg, and Cu/Zn ratio with oxidative status in patients with dementia were noted. The dementia may initially worsen with abnormal metabolism of trace elements and oxidative stress occurrence. Our results suggest that abnormalities in trace element levels are associated with oxidative stress and may be a major risk factor in the dementia development of uremic patients.  相似文献   

10.
There are few studies on Tibetan youth’s blood lead level (BLL) and environmental pollution in China. The objective of this project was to conduct a preliminary investigation on the blood lead level of Tibetan youth. Chinese Han youth’s BLL was also investigated as a control group. A total of 846 Tibetan youth and 785 Han youth were tested for BLL from September to October in 2007. Both of the mean BLL (6.4 μg/dL) and the frequency of high BLL (≥10 μg/dL) of Tibetan youth (7.7%, 65 of 846) were lower than those of Han youth (6.7 μg/dL; 13.2%, 104 of 785). But they are still higher compared with the BLL of youth in developed countries (1.1 μg/dL; USA 2005 census). The BLL of boys was significantly higher than that of girls, both in Tibetan and Han youth (p = 0.033 and p = 0.000, respectively). The study shows that Chinese Han and Tibetan youth's lead poisoning prevention and treatment lags far behind developed countries. These findings have implications for environmental health policy.  相似文献   

11.
Ali MB  Hahn EJ  Paek KY 《Plant cell reports》2006,25(10):1122-1132
Roots of Panax ginseng exposed to various concentrations of Cu (0.0, 5, 10.0, 25.0, and 50.0 μM) accumulated high amounts of Cu in a concentration-dependent and duration-dependent manner. Roots treated with 50 μM Cu resulted in 52% and 89% growth inhibition after 20 and 40 days, respectively. Saponin synthesis was stimulated at a Cu concentration between 5 and 25 μM but decreased at 50 μM Cu. Malondialdehyde content (MDA), lipoxygenase activity (LOX), superoxide ion (O2 •−) accumulation, and H2O2 content at 5 and 10 μM Cu-treated roots were not increased but strongly increased at 50 μM Cu resulting in the oxidation of ascorbate (ASC) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively indicating a clear oxidative stress. Seven well-resolved bands of superoxide dismutase (SOD) were detected in the gel and an increase in SOD activity seemed to be mainly due to the induction of Fe-SOD 3. Five to 10 μM Cu slightly induced activity of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR), guaiacol peroxidase (G-POD) but inhibited monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) enzyme activities. No changes in catalase (CAT) activity and in activity gel were found up to 25 μM Cu, but both G-POD and CAT activities were inhibited at 50 μM Cu. Glutathione metabolism enzymes such as γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST), and glutathione peroxidase activities (GPx) were activated at 5 and 10 μM Cu but were strongly inhibited at 50 μM Cu due to the Cu accumulation in root tissues. The strong depletion of GSH at 50 μM Cu was associated to the strong induction of γ-glutamyltranspeptidase (γ-GGT) activity. These results indicate that plant could grow under Cu stress (5–25 μM) by modulating the antioxidant defense mechanism for combating Cu induced oxidative stress.  相似文献   

12.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

13.
Plasma selenium (Se) concentration and erythrocyte glutathione peroxidase activity (GPx) were assessed in a population of healthy preschool children two to five years old, residing in the city of Paris. In the 118 subjects, mean (±SD) plasma Se concentration was 62.10 ±13.96 μg/L, and mean GPx activity was 23.58±8.52 U/g Hb. Mean plasma Se of male children was significantly (p=0.001) higher (12%) than levels of girls. Plasma selenium levels were not correlated with erythrocyte GPx activity. Children from Mediterranean origin had a slightly lower erythrocyte GPx activity (p<0.05) than children from other regions. Mean plasma Se concentration of this group corresponded to the lower limit of intervals, which characterizes geographical regions of intermediate selenium concentrations.  相似文献   

14.
The aim of this study was to evaluate DNA damage and the capacity for DNA repair in children exposed to arsenic and lead. During 2006, we studied a total of 85 healthy children (aged 4–11 years) who were residents of Villa de la Paz (community A), Matehuala (community B), and Soledad de Graciano Sanchez (community C) in San Luis Potosi, Mexico. The quantification of arsenic in urine (AsU) and lead in blood (PbB) was performed by atomic absorption spectrophotometry. The alkaline comet assay was used to evaluate DNA damage and DNA repair. The highest levels of AsU and PbB in children were found in community A (44.5 μg/g creatinine for arsenic and 11.4 μg/dL for lead), followed by community B (16.8 μg/g creatinine for arsenic and 7.3 μg/dL for lead) and finally by children living in community C (12.8 μg/g creatinine for arsenic and 5.3 μg/dL for lead). When DNA damage was assessed, children living in community A had the highest DNA damage. Analysis of these same cells 1 h after a challenge with H2O2 10 μM showed a dramatic increase in DNA damage in the cells of children living in community B and community C, but not in the cells of children living in community A. Moreover, significantly higher levels of DNA damage were observed 3 h after the challenge ended (repair period) in cells from individuals living in community A. Our results show that children exposed to metals might be more susceptible to DNA alterations.  相似文献   

15.
The effects of photosynthetic photon flux density (PPFD) on antioxidant metabolism and photosynthetic properties in leaves during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets were investigated. In vitro-propagated plantlets were acclimatized at either 50 (Low-light = LL) or 300 (High-light = HL) μmol m−2s−1 photosynthetic PPFD for 4 weeks under controlled conditions. Increases in chlorophyll (Chl) a, b and carotenoid levels were observed in plantlets acclimatized at both light intensities. At transplantation, micropropagated plantlets were not photosynthetically active, but the net photosynthetic rate increased in newly formed leaves over time during acclimatization. The observed differences in pigment contents and photosynthetic rates suggested adaptation of plantlets from heterotrophic to autotrophic mode of nutrition during acclimatization. Changes in activities of antioxidant enzymes were also observed during acclimatization. Superoxide dismutase activity increased in plantlets acclimatized at HL intensities. Likewise, changes in activity of catalase and ascorbate peroxidase were also detected. These observed changes reflected the ability of plants in developing an antioxidant enzymatic defense system aiding in survival against oxidative stress and in reducing release of free radicals.  相似文献   

16.
Sister chromatid exchange (SCE) frequency and high-frequency cells (HFCs) were analyzed in 50 storage battery plant workers with mean blood lead level (BLL) of 40.14±9.99 μg/dL. The mean BLL in the control group (n=30) was 9.77±1.67 μg/dL. This difference in mean BLLs between control and exposed group was statistically significant (p<0.05) and reflects clearly the lead exposure in the workers. Urinary aminolevulinic acid (U-ALA) was also determined in both control (3.37±0.89 mg ALA/g creatinine) and exposed groups (12.39±6.18 mg ALA/g creatinine) and U-ALA excretion was statistically higher (p<0.05) in lead-exposed workers. The relationship between biomarkers of lead exposure/effect and HFC percentage was higher than the relationship between biomarkers of lead exposure/effect and SCE frequency. Accordingly, HFC analysis seemed to be more sensitive than the SCE analysis as a cytogenetic biomarker for lead exposure. Additionally, the statistically significant correlation (r 2=0.880, p<0.01) between U-ALA excretion and HFC percentage in lead-exposed workers supported the probability of ALA mediated indirect mechanism for lead genotoxicity.  相似文献   

17.
The effects of streptomycin sulfate, gentamicin sulfate, thiamphenicol, penicillin G, teicoplanin, ampicillin, cefotaxime, and cefodizime on the enzyme activity of glutathione reductase (GR) were studied using human and rat erythrocyte GR enzymes in in vitro and in vivo studies, respectively. The enzyme was purified 5,342-fold from human erythrocytes in a yield of 29% with 50.75?U/mg. The purification procedure involved the preparation of hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies, and rat erythrocyte hemolysate was used in the in vivo studies. In the in vitro studies, I50 and Ki values were 12.179?mM and 6.5123±4.1139?mM for cefotaxime, and 1.682?mM and 0.7446±0.2216?mM for cefodizime, respectively, showing the inhibition effects on the purified enzyme. Inhibition types were noncompetitive for cefotaxime and competitive for cefodizime. In the in vivo studies, 300?mg/kg cefotaxime and 1000?mg/kg cefodizime when administered to rats inhibited enzyme activity during the first 2?h (p<0.01). Cefotaxime led to increased enzyme activity at 4?h (p<0.05), but neither cefotaxime nor cefodizime had any significant inhibition or activation effects over 6?h (p>0.05).  相似文献   

18.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV max /K m were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological” substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol).  相似文献   

19.
Studies have evidenced that zinc metabolism is altered in presence of Down syndrome, and zinc seems to have a relationship with the metabolic alterations usually present in this syndrome. In this work, the Zn-related nutritional status of adolescents with Down syndrome was evaluated by means of biochemical parameters and diet. A case–control study was performed in a group of adolescents with Down syndrome (n = 30) and a control group (n = 32), of both sexes, aged 10 to 19 years. Diet evaluation was accomplished by using a 3-day dietary record, and the analysis was performed by the NutWin program, version 1.5. Antropometric measurements were performed for evaluation of body composition. The Zn-related nutritional status of the groups was evaluated by means of zinc concentration determinations in plasma and erythrocytes, and 24-h urinary zinc excretion, by using the method of atomic absorption spectroscopy. The diet of both groups presented adequate concentrations of lipids, proteins, carbohydrates, and zinc. The mean values found for zinc concentration in erythrocytes were 49.2 ± 8.5 μg Zn/g Hb for the Down syndrome group and 35.9 ± 6.1 μg Zn/g Hb for the control group (p = 0.001). The average values found for zinc concentration in plasma were 67.6 ± 25.6 μg/dL for the Down syndrome group and 68.9 ± 22.3 μg/dL for the control group. The mean values found for zinc concentration in urine were 244.3 ± 194.9 μg Zn/24 h for the Down syndrome group and 200.3 ± 236.4 μg Zn/24 h for the control group. Assessment of body composition revealed overweight (26.7%) and obesity (6.6%) in the Down syndrome group. In this study, patients with Down syndrome presented altered zinc levels for some cellular compartments, and the average zinc concentrations were low in plasma and urine and elevated in erythrocytes.  相似文献   

20.
The effects of light and elevated temperatures on the efficiency of energy conversion in PSII [?PSII = (Fm′−Fs)/Fm′], pigment composition and heat tolerance of shade-acclimated Alocasia macrorrhiza were investigated. Leaf discs were exposed for 3 h to high light (HL; 1600 μmol photons · m−2 · s−1) or low light (LL; 20 μmol photons · m−2 · s−1) and a series of constant temperatures ranging from 30 to 49 °C. All HL treatments led to rapid and severe decreases in ?PSII. During the 2-h recovery period (LL, 25 °C) following the HL treatments, fast and slow recovery phases could be distinguished. Leaf discs that had experienced HL and 30 °C recovered completely while no recovery of ?PSII was seen after a 3-h exposure to HL and 45 °C. A 3-h exposure to 45 °C at LL led to a less severe decrease in ?PSII and complete recovery was accomplished after less than 1 h. Under LL conditions a temperature of 49 °C was necessary to cause an irreversible decrease in ?PSII, followed by necrosis the next day. Streptomycin had no effect on the degree of reduction and recovery in ?PSII discs exposed to HL and 35–45 °C, but partially inhibited recovery in discs exposed to HL and 30 °C. Streptomycin led to a more severe decrease in ?PSII at LL and 49 °C and completely inhibited recovery. Streptomycin had no effect on the conversion of the xanthophyll-cycle pigments during the treatment or the recovery. The epoxidation state was roughly the same in all leaf discs after a 3-h HL treatment (0.270–0.346) irrespective of the exposure temperature. The back-conversion of zeaxanthin into violaxanthin after a 2-h recovery period was only seen in leaf discs that had been exposed to HL and 30 °C. The thermotolerance of shade A. macrorrhiza leaves of 49.0 ± 0.7 °C (determined by fluorescence) coincided with the temperature at which damage occurred in leaf discs exposed to LL. However, under HL the critical temperature under which necrosis occurred was much lower (42 °C). The thermotolerance of A. macrorrhiza shade leaves could be increased by a short exposure (<20 min) to slightly elevated temperatures. Received: 11 June 1997 / Accepted: 9 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号