首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with <Emphasis Type="Italic">Ulmus minor</Emphasis> Mill.
Authors:M C Dias  G Pinto  C Santos
Institution:(1) Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
Abstract:In this article, the effects of increased light intensities on antioxidant metabolism during ex vitro establishment of Ulmus minor micropropagated plants are investigated. Three month old in vitro plants were acclimatized to ex vitro conditions in a climate chamber with two different light intensities, 200 μmol m−2 s−1 (high light, HL) and 100 μmol m−2 s−1 (low light, LL) during 40 days. Immediately after ex vitro transfer, the increase of both malondialdehyde (MDA) and electrolyte leakage in persistent leaves is indicative of oxidative stress. As the acclimatization continues, an upregulation of the superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activities were also observed. Simultaneously, MDA content and membrane permeability stabilized, suggesting that the antioxidant enzymes decrease the deleterious effects of reactive oxygen species (ROS) generation. Unexpectedly, newly formed leaves presented a different pattern of antioxidative profile, with high levels of MDA and membrane leakage and low antioxidant enzyme activity. Despite these differences, both leaf types looked healthy (e.g. greenish, with no necrotic spots) during the whole acclimatization period. The results indicate that micropropagated U. minor plantlets develop an antioxidant enzyme system after ex vitro transfer and that, in general, LL treatment leads to lower oxidative stress. Moreover, new leaves tolerate higher levels of ROS without the need to activate the antioxidative pathway, which suggests that the environment at which leaves are exposed during its formation determinate their ability to tolerate ROS.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号