首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bermudagrass (Cynodon spp.) is extensively cultivated for forage and turf in the the southern United States and in parts of Asia, Africa, southern Europe, Australia and South America. However, few simple sequence repeat (SSR) markers are available for bermudagrass genetics research. Accordingly, the objective of this study was to develop SSR markers in bermudagrass by transferring sorghum genomic SSR primers and by exploring bermudagrass expressed sequence tags (ESTs) from the National Center for Biotechnology Information (NCBI) database. The transferability of 354 tested sorghum SSRs was 57% to C. transvaalensis T577 (2n = 2x = 18), 27% to C. dactylon Tifton 10 (2n = 6x = 54) and 22% to Zebra (2n = 4x = 36). Among the transferred SSRs, 65 primer pairs generated reproducible SSR bands across the three genotypes. From 20,237 Cynodon ESTs at NCBI, 303 designed SSR primer pairs amplified target bands in at least one of C. dactylon var. aridus (2n = 2x = 18), C. transvaalensis T577, C. dactylon cv. Tifton 10, and C. dactylon var. dactylon Zebra. Of the effective EST SSRs, 230 primer pairs produced reproducible bands in all four genotypes. The study demonstrated that EST sequences and sorghum SSR primers are useful sources for the development of SSR markers for bermudagrass. The developed SSR markers will make a valuable contribution to the molecular identification of commercial cultivars, construction of genetic maps, and marker-assisted breeding in bermudagrass.  相似文献   

2.
3.
Switchgrass (Panicum virgatum L.) is a model cellulosic biofuel crop in the United States. Simple sequence repeat (SSR) markers are valuable resources for genetic mapping and molecular breeding. A large number of expressed sequence tags (ESTs) of switchgrass are recently available in our sequencing project. The objectives of this study were to develop new SSR markers from the switchgrass EST sequences and to integrate them into an existing linkage map. More than 750 unique primer pairs (PPs) were designed from 243,600 EST contigs and tested for PCR amplifications, resulting in 538 PPs effectively producing amplicons of expected sizes. Of the effective PPs, 481 amplifying informative bands in NL94 were screened for polymorphisms in a panel consisting of NL94 and its seven first-generation selfed (S1) progeny. This led to the selection of 117 polymorphic EST–SSRs to genotype a mapping population encompassing 139 S1 individuals of NL94. Of 83 markers demonstrating clearly scorable alleles in the mapping population, 79 were integrated into a published linkage map, with three linked to accessory loci and one unlinked. The newly identified EST–SSR loci were distributed in 17 of 18 linkage groups with 27 (32.5 %) exhibiting distorted segregations. The integration of EST–SSRs aided in reducing the average marker interval (cM) to 3.7 from 4.2, and reduced the number of gaps (each >15 cM) to 10 from 23. Developing new EST–SSRs and constructing a higher density linkage map will facilitate quantitative trait locus mapping and provide a firm footing for marker-assisted breeding in switchgrass.  相似文献   

4.
Common bermudagrass [C. dactylon (L.) Pers. var. dactylon] is economically and environmentally the most important member among Cynodon species because of its extensive use for turf, forage and soil erosion control in the world. However, information regarding the inheritance within the taxon is limited. Accordingly, the objective of this study was to determine qualitative inheritance mode in common bermudagrass. Two tetraploid (2n = 4x = 36), first-generation selfed (S1) populations, 228 progenies of ‘Zebra’ and 273 from A12359, were analyzed for segregation with 21 and 12 simple sequence repeat (SSR) markers, respectively. It is concluded that the inheritance mode of tetraploid bermudagrass was complete or near complete disomic. It is evident that the two bermudagrass parents had an allotetraploid genome with two distinct subgenomes since 33 SSR primer pairs amplified 34 loci, each having two alleles. Severe transmission ratio distortions occurred in the Zebra population while less so in the A12359 population. The findings of disomic inheritance and segregation ratio distortion in common bermudagrass is significant in subsequent linkage map construction, quantitative trait locus mapping and marker-assisted selection in the species.  相似文献   

5.
In order to optimize tissue culture conditions for bermudagrass, an important warm-season turfgrass species, tissue culture responses of young inflorescences of a hybrid bermudagrass cultivar `Tifgreen' (Cynodon dactylon×Cynodon transvaalensis) and a common bermudagrass cultivar `Savannah' (Cynodon dactylon) were investigated. When cultured on Murashige and Skoog medium with 4.52 to 13.57 μM (1–3 mg l-1) 2,4-D, young inflorescence segments yielded non-embryogenic calli which were unorganized and had loosely associated, long tubular cells on the surface. However, inclusion of 6-benzyladenine (BA) in callus induction medium at a level of 0.044 μM (0.01 mg l-1) induced formation of a compact, nodular embryogenic structure on approximately 20% of the calli. Calli with such a compact embryogenic structure were highly regenerable. When young inflorescences smaller than 0.75 cm were cultured, the embryogenic structure yielded green plantlets with regeneration rates of 79.5% and 83.3%, respectively for the two cultivars. All 96 plants regenerated from calli induced in the BA-containing medium were green and morphologically normal. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Fan  Jibiao  Xie  Yan  Hu  Zhengrong  Liu  Ao  Amombo  Erick  Chen  Liang  Fu  Jinmin 《Journal of Plant Growth Regulation》2020,39(1):172-182

Bermudagrass [Cynodon dactylon (L.) Pers.] is a perennial and typical warm-season grass. It undergoes withering and severe damage under cold stress; thus, cold is considered as a key factor that restricts the widespread use in bermudagrass. Identification of association between molecular markers and cold tolerance-related traits would facilitate the efficient selection of cold tolerant bermudagrass cultivars. A total of 106 diverse bermudagrass accessions, including 4 commercial cultivars and 102 wild germplasms, were tested for cold tolerance and analyzed by 104 simple sequence repeat (SSR) markers. Cold significantly decreased transpiration rate, growth rate and turf quality. There were significant variations in these trait values among the accessions under cold conditions. Two subpopulations were detected in the panel of accessions based on the analysis of 1474 alleles with 104 SSR markers. Clustering analysis revealed that the genetic relationship was affected by the natural habitats. Thirty-four SSR markers were identified to be associated with two or three traits based on the corrected P values (P < 3.5 × 10−4). These markers can be used for genetic improvement of cold tolerance of bermudagrass after further validation.

  相似文献   

7.
The construction of the first genetic map in autotetraploid blueberry has been made possible by the development of new SNP markers developed using genotyping by sequencing in a mapping population created from a cross between two key highbush blueberry cultivars, Draper × Jewel (Vaccinium corymbosum). The novel SNP markers were supplemented with existing SSR markers to enable the alignment of parental maps.  In total, 1794 single nucleotide polymorphic (SNP) markers and 233 simple sequence repeat (SSR) markers exhibited segregation patterns consistent with a random chromosomal segregation model for meiosis in an autotetraploid. Of these, 700 SNPs and 85 SSRs were utilized for construction of the ‘Draper’ genetic map, and 450 SNPs and 86 SSRs for the ‘Jewel’ map.  The ‘Draper’ map comprises 12  linkage groups (LG), associated with the haploid chromosome number for blueberry, and totals 1621 cM while the ‘Jewel’ map comprises 20 linkage groups totalling 1610 cM. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents.  相似文献   

8.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   

9.
Development of 1,030 genomic SSR markers in switchgrass   总被引:1,自引:0,他引:1  
Switchgrass, Panicum virgatum L., a native to the tall grass prairies in North America, has been grown for soil conservation and herbage production in the USA and recently widely recognized as a promising dedicated cellulosic bioenergy crop. A large amount of codominant molecular markers including simple sequence repeats (SSRs) are required for the construction of linkage maps and implementation of molecular breeding strategies to develop superior switchgrass cultivars. The objectives of this study were (1) to identify SSR-containing clones and to design PCR primer pairs (PPs) in SSR-enriched genomic libraries, and (2) to validate and characterize the designed SSR PPs. Five genomic SSR enriched libraries were constructed using genomic DNA of ‘SL93 7 × 15’, a switchgrass genotype selected in an Oklahoma State University (OSU) southern lowland breeding population. A total of 3,046 clones from four libraries enriched in (CA/TG)n, (GA/TC)n, (CAG/CTG)n and (AAG/CTT)n SSR repeats were sequenced at the OSU Core Facility. From the sequences, we isolated 1,300 unique SSR-containing clones, from which we designed 1,398 PPs using SSR Locator V.1 software. Among the designed PPs, 1,030 (73.7%) amplified reproducible and strong bands with expected fragment size, and 802 detected polymorphic alleles, in SL93 7 × 15 and ‘NL94 16 × 13’, two parents of one mapping population. All of the four libraries contained a high rate of perfect SSR repeat types, ranging from 62.7 to 76.2%. Polymorphism of the effective SSR markers was also tested in two lowland and two upland switchgrass cultivars, encompassing ‘Alamo’ and ‘Kanlow’, and ‘Blackwell’ and ‘Dacotah’, respectively. The developed SSR markers should be useful in genetic and breeding research in switchgrass.  相似文献   

10.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

11.
Certain nematodes are common soilborne organisms found in turfgrass in the United States that cause significant economic damage to golf course turf. One of the most prevalent plant-parasitic nematodes infesting turfgrass are root-knot nematodes (Meloidogyne spp.). Chemical treatment options for root-knot nematodes in turfgrass are limited, and there is a need for new nematicidal active ingredients to address this problem. In this study, we evaluated the use of silver nanoparticles (AgNP) as a potential nematicide in laboratory and field experiments. AgNP was synthesized by a redox reaction of silver nitrate with sodium borohydride using 0.2% starch as a stabilizer. When J2 of M. incognita were exposed to AgNP in water at 30 to 150 μg/ml, >99% nematodes became inactive in 6 hr. When turfgrass and soil composite samples infested with M. graminis were treated with 150 μg/ml AgNP, J2 were reduced in the soil samples by 92% and 82% after 4- and 2-d exposures, respectively, in the treated compared to the nontreated soil samples. Field trials evaluating AgNP were conducted on a bermudagrass (Cynodon dactylon × C. transvaalensis) putting green infested with M. graminis. Biweekly application of 90.4 mg/m2 of AgNP improved turfgrass quality in one year and reduced gall formation in the roots in two years without phytotoxicity. The AgNP application did not significantly reduce the number of M. graminis J2 in plots during the growing season. The laboratory assays attested to the nematicidal effect of AgNP, and the field evaluation demonstrated its benefits for mitigating damage caused by root-knot nematode in bermudagrass.  相似文献   

12.
Du H  Wang Z  Yu W  Liu Y  Huang B 《Physiologia plantarum》2011,141(3):251-264
Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool‐season (C3) and warm‐season (C4) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C4 bermudagrass and C3 Kentucky bluegrass by performing metabolite profile analysis using gas chromatography‐mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis‘Midnight’) and hybrid bermudagrass (Cynodon transvaalensis×Cynodon dactylon‘Tifdwarf’) were grown under optimum temperature conditions (20/15°C for Kentucky bluegrass and 30/25°C for bermudagrass) or heat stress (35/30°C for Kentucky bluegrass and 45/40°C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat‐responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long‐term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ‐Aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C3 Kentucky bluegrass and C4 bermudagrass.  相似文献   

13.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

14.
We constructed a high-density genetic linkage map of bronze loquat (Eriobotrya deflexa) by using a three-way cross of loquat (Eriobotrya japonica) × (loquat × bronze loquat) and simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers. The positions of the SSR loci used in this study were previously identified on reference maps of pears (Pyrus spp.) and apples (Malus spp.). The map of bronze loquat (‘Taiwan loquat No. 1’) consisted of 308 loci including 167 SSRs (8 loquat, 57 pear, and 102 apple SSRs), 140 RAPDs, and the loquat canker resistance gene Pse-a on 19 linkage groups covering a genetic distance of 1036 cM. Almost all loquat linkage groups were aligned to the pear consensus map by using at least two pear or apple SSRs, suggesting that positions and linkages of SSR loci were well conserved between loquat and pear and between loquat and apple. The constructed map may be used to determine the location of genes and quantitative trait loci of interest and to analyze genome synteny in the tribe Pyreae, subfamily Spiraeoideae of the family Rosaceae.  相似文献   

15.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

16.
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study.  相似文献   

17.

Key message

We report SSR-enriched genetic maps of bermudagrass that: (1) reveal partial residual polysomic inheritance in the tetraploid species, and (2) provide insights into the evolution of chloridoid genomes.

Abstract

This study describes genetic linkage maps of two bermudagrass species, Cynodon dactylon (T89) and Cynodon transvaalensis (T574), that integrate heterologous microsatellite markers from sugarcane into frameworks built with single-dose restriction fragments (SDRFs). A maximum likelihood approach was used to construct two separate parental maps from a population of 110 F1 progeny of a cross between the two parents. The T89 map is based on 291 loci on 34 cosegregating groups (CGs), with an average marker spacing of 12.5 cM. The T574 map is based on 125 loci on 14 CGs, with an average marker spacing of 10.7 cM. Six T89 and one T574 CG(s) deviated from disomic inheritance. Furthermore, marker segregation data and linkage phase analysis revealed partial residual polysomic inheritance in T89, suggesting that common bermudagrass is undergoing diploidization following whole genome duplication (WGD). Twenty-six T89 CGs were coalesced into 9 homo(eo)logous linkage groups (LGs), while 12 T574 CGs were assembled into 9 LGs, both putatively representing the basic chromosome complement (x?=?9) of the species. Eight T89 and two T574 CGs remain unassigned. The marker composition of bermudagrass ancestral chromosomes was inferred by aligning T89 and T574 homologs, and used in comparisons to sorghum and rice genome sequences based on 108 and 91 significant blast hits, respectively. Two nested chromosome fusions (NCFs) shared by two other chloridoids (i.e., zoysiagrass and finger millet) and at least three independent translocation events were evident during chromosome number reduction from 14 in the polyploid common ancestor of Poaceae to 9 in Cynodon.
  相似文献   

18.
Simple sequence repeat (SSR) markers are highly informative and widely used for genetic and breeding studies. Currently, a very limited number of SSR markers are available for tall fescue (Festuca arundinacea Schreb.) and other forage grass species. A tall fescue genomic library enriched in (GA/CT) n repeats was used to develop primer pairs (PPs) flanking SSRs and assess PP functionality across different forage, cereal, and turf grass species. A total of 511 PPs were developed and assessed for their utility in six different grass species. The parents and a subset of a tall fescue mapping population were used to select PPs for mapping in tall fescue. Survey results revealed that 48% (in rice) to 66% (in tall fescue) of the PPs produced clean SSR-type amplification products in different grass species. Polymorphism rates were higher in tall fescue (68%) compared to other species (46% ryegrass, 39% wheat, and 34% rice). A set of 194 SSR loci (38%) were identified which amplified across all six species. Loci segregating in the tall fescue mapping population were grouped as loci segregating from the female parent (HD28-56, 37%), the male parent (R43-64, 37%), and both parents (26%). Three percent of the loci that were polymorphic between parents were monomorphic in the pseudo F1 mapping population and the remaining loci segregated. Sequencing of amplified products obtained from PP NFFAG428 revealed a very high level of sequence similarity among the grass species under study. Our results are the first report of genomic SSR marker development from tall fescue and they demonstrate the usefulness of these SSRs for genetic linkage mapping in tall fescue and cross-species amplification.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
We have previously reported Xgwm382 as a diagnostic marker for disease resistance against yellow rust in Izgi2001 × ES14 F2 population. Among the same earlier tested 230 primers, one SSR marker (Xgwm311) also amplified a fragment which is present in the resistant parent and in the resistant bulks, but absent in the susceptible parent and in the susceptible bulks. To understand the chromosome group location of these diagnostic markers, Xgwm382 and Xgwm311, in the same population, we selected 16 SSR markers mapped only in one genome of chromosome group 2 around 1–21 cM distance to these diagnostic markers based on the SSR consensus map of wheat. Out of 16 SSRs, Xwmc658 identified resistant F2 individuals as a diagnostic marker for yellow rust disease and provided the location of Xgwm382 and Xgwm311 on chromosome 2AL in our plant material.  相似文献   

20.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号