首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.  相似文献   

2.
In contrast to lower eukaryotes, most vertebrate cells are characterized by a moderate efficiency of homologous recombination (HR) and limited feasibility of targeted genetic modifications. As a notable exception, the chicken DT40 B cell line is distinguished by efficient homology-mediated repair of DNA lesions during Ig gene conversion, and also shows exceptionally high gene-targeting efficiencies. The molecular basis of these phenomena is elusive. Here we show that the activity levels of Ubc13, the E2 enzyme responsible for non-canonical K63-linked polyubiquitination, are critical for high efficiency of Ig gene conversion and gene targeting in DT40. Ubc13+/− cells show substantially lower homology-mediated repair, yet do not display changes in somatic hypermutation, overall DNA repair or cell proliferation. Our results suggest that modulation of the activity of K63-linked polyubiquitination may be used to customize HR efficiencies in vertebrate cells.  相似文献   

3.
Sale JE 《DNA Repair》2004,3(7):693-702
Studies of recombination in vertebrates have rather lagged behind those in yeast and bacteria in large part due to the relative genetic intractability of vertebrate model systems. Immunoglobulin diversification in the chicken cell line DT40 provides a powerful combination of a physiological recombination process coupled with facile genetic modification. The immunoglobulin variable regions of DT40 constitutively diversify by a combination of gene conversion, in which sequence changes are templated from one of a number of upstream pseudogenes or by non-templated point mutation. Both of these events are initiated by abasic sites in the variable region DNA generated following the targeted deamination of cytidine by activation induced deaminase. Recent work has shown that the two outcomes, gene conversion and somatic mutation, are likely to reflect alternate pathways for the processing of these abasic sites. In this review I will discuss the current data on avian Ig gene diversification and examine how the immunoglobulin loci of DT40 may provide a useful model system for studying the mechanisms and interactions of vertebrate recombination and pathways of DNA damage tolerance.  相似文献   

4.
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.  相似文献   

5.
6.
The Fanconi anemia (FA) protein FANCC is essential for chromosome stability in vertebrate cells, a feature underscored by the extreme sensitivity of FANCC-deficient cells to agents that crosslink DNA. However, it is not known how this FA protein facilitates the repair of both endogenously acquired and mutagen-induced DNA damage. Here, we use the model vertebrate cell line DT40 to address this question. We discover that apart from functioning in homologous recombination, FANCC also promotes the mutational repair of endogenously generated abasic sites. Moreover in these vertebrate cells, the efficient repair of crosslinks requires the combined functions of FANCC, translesion synthesis, and homologous recombination. These studies reveal that the FA proteins cooperate with key mutagenesis and repair processes that enable replication of damaged DNA.  相似文献   

7.
In human somatic cells, homologous recombination is a rare event. To facilitate the targeted modification of the genome for research and gene therapy applications, efforts should be directed toward understanding the molecular mechanisms of homologous recombination in human cells. Although human genes homologous to members of the RAD52 epistasis group in yeast have been identified, no genes have been demonstrated to play a role in homologous recombination in human cells. Here, we report that RAD54B plays a critical role in targeted integration in human cells. Inactivation of RAD54B in a colon cancer cell line resulted in severe reduction of targeted integration frequency. Sensitivity to DNA-damaging agents and sister-chromatid exchange were not affected in RAD54B-deficient cells. Parts of these phenotypes were similar to those of Saccharomyces cerevisiae tid1/rdh54 mutants, suggesting that RAD54B may be a human homolog of TID1/RDH54. In yeast, TID1/RDH54 acts in the recombinational repair pathway via roles partially overlapping those of RAD54. Our findings provide the first genetic evidence that the mitotic recombination pathway is functionally conserved from yeast to humans.  相似文献   

8.
Genetic recombination and the repair of double-strand DNA breaks in Saccharomyces cerevisiae require Rad51, a homologue of the Escherichia coli RecA protein. In vitro, Rad51 binds DNA to form an extended nucleoprotein filament and catalyzes the ATP-dependent exchange of DNA between molecules with homologous sequences. Vertebrate Rad51 is essential for cell proliferation. Using site-directed mutagenesis of highly conserved residues of human Rad51 (hRad51) and gene targeting of the RAD51 locus in chicken DT40 cells, we examined the importance of Rad51's highly conserved ATP-binding domain. Mutant hRad51 incapable of ATP hydrolysis (hRad51K-133R) binds DNA less efficiently than the wild type but catalyzes strand exchange between homologous DNAs. hRad51 does not need to hydrolyze ATP to allow vertebrate cell proliferation, form nuclear foci, or repair radiation-induced DNA damage. However, cells expressing hRad51K-133R show greatly reduced targeted integration frequencies. These findings show that ATP hydrolysis is involved in DNA binding by hRad51 and suggest that the extent of DNA complexed with hRad51 in nucleoprotein influences the efficiency of recombination.  相似文献   

9.

Background  

Gene conversion depends upon the same factors that carry out more general process of homologous recombination, including homologous gene targeting and recombinational repair. Among these are the RAD51 paralogs, conserved factors related to the key recombination factor, RAD51. In chicken and other fowl, gene conversion (templated mutation) diversifies immunoglobulin variable region sequences. This allows gene conversion and recombinational repair to be studied using the chicken DT40 B cell line, which carries out constitutive gene conversion and provides a robust and physiological model for homology-directed repair in vertebrate cells.  相似文献   

10.
In yeast, Rev1, Rev3, and Rev7 are involved in translesion synthesis over various kinds of DNA damage and spontaneous and UV-induced mutagenesis. Here, we disrupted Rev1, Rev3, and Rev7 in the chicken B-lymphocyte line DT40. REV1-/- REV3-/- REV7-/- cells showed spontaneous cell death, chromosomal instability/fragility, and hypersensitivity to various genotoxic treatments as observed in each of the single mutants. Surprisingly, the triple-knockout cells showed a suppressed level of sister chromatid exchanges (SCEs), which may reflect postreplication repair events mediated by homologous recombination, while each single mutant showed an elevated SCE level. Furthermore, REV1-/- cells as well as triple mutants showed a decreased level of immunoglobulin gene conversion, suggesting participation of Rev1 in a recombination-based pathway. The present study gives us a new insight into cooperative function of three Rev molecules and the Polzeta (Rev3-Rev7)-independent role of Rev1 in vertebrate cells.  相似文献   

11.

Background  

Gene disruption by targeted integration of transfected constructs becomes increasingly popular for studies of gene function. The chicken B cell line DT40 has been widely used as a model for gene knock-outs due to its high targeted integration activity. Disruption of multiple genes and complementation of the phenotypes is, however, restricted by the number of available selectable marker genes. It is therefore highly desirable to recycle the selectable markers using a site-specific recombination system like Cre/loxP.  相似文献   

12.
Fanconi anemia (FA) is a rare hereditary disorder characterized by skeletal abnormalities, bone marrow failure, and an increased incidence of cancer. The basic cellular abnormality in FA has been postulated to lie in the DNA repair mechanisms because cells from FA patients display chromosomal breakage, which is particularly remarkable following induction of DNA crosslinks. However, experimental evidence for this hypothesis has been lacking. To test whether DNA repair is really defective in FA cells, we disrupted several FA genes in chicken B cell line DT40. By measuring efficiency of gene conversion and hypermutation at the Immunoglobulin locus, we have shown that DT40 FA mutant cell lines exhibited defects in homologous DNA recombination, and possibly, translesion synthesis. However, levels of sister chromatid exchange, another important cellular event mediated by HR, were not reduced, possibly indicating the role of FA genes only in a subpathway of HR. Our results indicate that chicken DT40 cells could be highly useful in molecular dissection of basic biochemical processes, which are deficient in a human genetic disorder.  相似文献   

13.
During culture, a chicken B cell line DT40 spontaneously mutates immunoglobulin (Ig) genes by gene conversion, which involves activation-induced cytidine deaminase (AID)-dependent homologous recombination of the variable (V) region gene with upstream pseudo-V genes. To explore whether this mutation mechanism can target exogenous non-Ig genes, we generated DT40 lines that bears a gene conversion substrate comprising the green fluorescent protein (GFP) gene as a donor and the blue fluorescent protein (BFP) gene as an acceptor. A few percent of the initially BFP-expressing cells converted their fluorescence from blue to green after culture for 2–3 weeks when the substrate construct was integrated in the Ig light chain locus, but not in the ovalbumin locus. This was the result of AID-dependent and the GFP gene-templated gene conversion of the BFP gene, thereby leading to the introduction of various sizes of GFP-derived gene segment into the BFP gene. Thus, G/B construct may be used to visualize gene conversion events. After switching off AID expression in DT40 cells, the mutant clones were isolated stably and maintained with their mutations being fixed. Thus, the gene conversion machinery in DT40 cells will be a useful means to engineer non-Ig proteins by a type of DNA shuffling.  相似文献   

14.
In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.  相似文献   

15.
Thousands of new vertebrate genes have been discovered and genetic systems are needed to address their functions at the cellular level. The chicken B cell line DT40 allows efficient gene disruptions due to its high homologous recombination activity. However, cloning the gene of interest is often cumbersome, since relatively few chicken cDNA sequences are present in the public databases. In addition, the accumulation of multiple mutations within the same cell clone is limited by the consumption of one drug-resistance marker for each transfection. Here, we present the DT40 web site (http://genetics.hpi.uni-hamburg.de/dt40.html), which includes a comprehensive database of chicken bursal ESTs to identify disruption candidate genes and recyclable marker cassettes based on the loxP system. These freely available resources greatly facilitate the analysis of genes and genetic networks.  相似文献   

16.
Role for RAD18 in homologous recombination in DT40 cells   总被引:2,自引:0,他引:2       下载免费PDF全文
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.  相似文献   

17.
Brca1 in immunoglobulin gene conversion and somatic hypermutation   总被引:1,自引:0,他引:1  
Defects in Brca1 confer susceptibility to breast cancer and genomic instability indicative of aberrant repair of DNA breaks. Brca1 was previously implicated in the homologous recombination pathway via effects on the assembly of recombinase Rad51. Activation-induced cytidine deaminase (AID) deaminates C to U in B lymphocyte immunoglobulin (Ig) DNA to initiate programmed DNA breaks. Subsequent uracil-glycosylase mediated U removal, and perhaps further processing, leads to four known classes of mutation: Ig class switch recombination that results in a region-specific genomic deletion, Ig somatic hypermutation that introduces point mutations in Ig V-regions, Ig gene conversion in vertebrates that possess Ig pseudo-V genes, and translocations common to B cell lymphomas. We tested the involvement of Brca1 in AID-dependent Ig diversification in chicken DT40 cells. The DT40 cell line diversifies IgVlambda mainly by gene conversion, and less so by point mutation. Brca1-deficiency caused a shift in Vlambda diversification, significantly reducing the proportion of gene conversions relative to point mutations. Thus, Brca1 regulates AID-dependent DNA lesion repair. Interestingly, while Brca1 is required to recruit ubiquitinated FancD2 to DNA damage, the phenotype of Brca1-deficient DT40 differs from the one of FancD2-deficient DT40, in which both gene conversion and non-templated mutations are impaired.  相似文献   

18.
The maintenance of genomic stability and the ability to repair induced DNA damage in vertebrate cells require homologues of the yeast RAD52 epistasis group genes. The homologous recombination carried out by the products of these genes is essential and appears to be closely linked to DNA replication. Defects in recombination and associated activities are implicated in human cancer. This review summarises recent biochemical and genetic findings on the roles played by the vertebrate RAD52 group gene products in recombination. We describe the phenotypic analysis of genetically engineered mammalian and chicken mutants of homologous recombination genes.  相似文献   

19.
影响动物细胞同源重组发生与基因打靶效率的分子机制   总被引:1,自引:0,他引:1  
真核细胞的基因打靶是基因结构与功能研究的一种非常有价值的技术,也是可应用于基因治疗的具有潜力的工具。有2个限制因素束缚真核细胞基因打靶的发展,即同源重组(HR)率非常低而随机整合率非常高。通过特定基因的过表达或表达干涉,使一些参与DNA重组的蛋白表达水平瞬间改变,可能会增加HR率,降低随机整合率。本文列举了一些与HR相关的候选基因,详细介绍了其中的Rad52上位簇基因,还讨论了打靶载体的设计与修饰、DNA转染方法的有效性等。  相似文献   

20.
BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3' end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号