首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Soil respiration in forest plantations can be greatly affected by management practices such as irrigation. In northwest China, soil water is usually a limiting factor for the development of forest plantations. This study aims to examine the effects of irrigation intensity on soil respiration from three poplar clone plantations in this arid area.

Methods

The experiment included three poplar clones subjected to three irrigation intensities (without, low and high). Soil respiration was measured using a Li-6400-09 chamber during the growing season in 2007.

Results

Mean soil respiration rates were 2.92, 4.74 and 3.49 μmol m?2 s?1 for control, low and high irrigation treatments, respectively. Soil respiration decreased once soil water content was below a lower (14.8 %) or above an upper (26.2 %) threshold. When soil water content ranged from 14.8 % to 26.2 %, soil respiration increased and correlated with soil temperature. Fine root also played a role in the significant differences in soil CO2 efflux among the three treatments. Furthermore, the three poplar hybrid clones responded differently to irrigation regarding fine root production and soil CO2 efflux.

Conclusions

Irrigation intensity had a strong impact on soil respiration of the three poplar clone plantations, which was mainly because fine root biomass and microbial activities were greatly influenced by soil water conditions. Our results suggest that irrigation management is a main factor controlling soil carbon dynamics in forest plantation in arid regions.  相似文献   

2.

Aims

The partitioning of the total soil CO2 efflux into its two main components: respiration from roots (and root-associated organisms) and microbial respiration (by means of soil organic matter (SOM) and litter decomposition), is a major need in soil carbon dynamics studies in order to understand if a soil is a net sink or source of carbon.

Methods

The heterotrophic component of the CO2 efflux was estimated for 11 forest sites as the ratio between the carbon stocks of different SOM pools and previously published (Δ14C derived) turnover times. The autotrophic component, including root and root-associated respiration, was calculated by subtracting the heterotrophic component from total soil chamber measured CO2 efflux.

Results

Results suggested that, on average, 50.4 % of total soil CO2 efflux was derived from the respiration of the living roots, 42.4 % from decomposition of the litter layers and less than 10 % from decomposition of belowground SOM.

Conclusions

The Δ14C method proved to be an efficient tool by which to partition soil CO2 efflux and quantify the contribution of the different components of soil respiration. However the average calculated heterotrophic respiration was statistically lower compared with two previous studies dealing with soil CO2 efflux partitioning (one performed in the same study area; the other a meta-analysis of soil respiration partitioning). These differences were probably due to the heterogeneity of the SOM fraction and to a sub-optimal choice of the litter sampling period.  相似文献   

3.

Aims

To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, it is necessary to explore the responses of soil-atmosphere carbon dioxide (CO2) exchange to N addition.

Methods

Based on a multi-form, low-level N addition experiment, soil CO2 effluxes were monitored weekly using the static chamber and gas chromatograph technique. Soil variables and aboveground biomass were measured monthly to examine the key driving factors of soil CO2 efflux.

Results

The results showed that low-level N input tended to decrease soil moisture, whereas medium-level N input maintained soil moisture. Three-year N additions slightly increased soil inorganic N pools, especially the soil NH 4 + -N pool. N applications significantly increased aboveground biomass and soil CO2 efflux; moreover, this effect was more significant from NH 4 + -N than from NO 3 ? -N fertilizer. In addition, the soil CO2 efflux was mainly driven by soil temperature, followed by aboveground biomass and NH 4 + -N pool.

Conclusions

These results suggest that chronic atmospheric N deposition will stimulate soil CO2 efflux in the alpine meadow on the Qinghai–Tibetan Plateau by increasing available N content and promoting plant growth.  相似文献   

4.

Aims

In this study we quantified the annual soil CO2 efflux (annual SCE) of a short rotation coppice plantation in its establishment phase. We aimed to examine the effect of former (agricultural) land use type, inter-row spacing and genotype.

Methods

Annual SCE was quantified during the second growth year of the establishment rotation in a large scale poplar plantation in Flanders. Automated chambers were distributed over the two former land use types, the two different inter-row spacings and under two poplar genotypes. Additional measurements of C, N, P, K, Mg, Ca and Na concentrations of the soil, pH, bulk density, fine root biomass, microbial biomass C, soil mineralization rate, distance to trees and tree diameters were performed at the end of the second growth year.

Results

Total carbon loss from soil CO2 efflux was valued at 589 g m?2 yr?1. Annual SCE was higher in former pasture as compared to cropland, higher in the narrow than in the wider inter-row spacings, but no effect of genotype was found.

Conclusions

Spatial differences in site characteristics are of great importance for understanding the effect of ecosystem management and land use change on soil respiration processes and need to be taken into account in modeling efforts of the carbon balance.  相似文献   

5.

Aims

Our aims were to identify responsible factors for the site-to-site variability in soil CO2 efflux and to assess the sources of soil CO2 of different forest types on a regional scale.

Methods

Soil CO2 effluxes were measured over 1–4 years in four coniferous and three deciduous forests of Bavaria, Germany, and related to climate, soil properties and forest productivity. Total belowground carbon allocation (TBCA) was assessed using soil CO2 effluxes and aboveground litterfall. Additionally, CO2 production of organic layers was examined over 10 months under constant conditions in an incubation experiment.

Results

Annual soil CO2 effluxes were not different among the forest sites, but predicted effluxes at a given temperature of 10°C revealed some significant differences and correlated with the phosphorous stock of the organic layers. The incubation study indicated 50% faster decomposition of organic layers from deciduous than from coniferous forests. TBCA related to soil CO2 efflux was smaller in the deciduous than in the coniferous forests. The ratio of TBCA to soil CO2 efflux was positively correlated with the C stock of organic layers.

Conclusions

Our results suggest that marked differences in site characteristics have little impact on soil CO2 effluxes at the regional scale, but the contribution of soil CO2 sources varies among the forest types.  相似文献   

6.

Key message

Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield.

Abstract

This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using 14C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 μM) and sufficient (100 μM) P concentrations were exposed to 14CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative 14C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.  相似文献   

7.

Aims

In view of the projected increase in global air temperature and CO2 concentration, the effects of climatic changes on biomass production, CO2 fluxes and arbuscular mycorrhizal fungi (AMF) colonization in newly established grassland communities were investigated. We hypothesized that above- and below-ground biomass, gross primary productivity (GPP), AMF root colonization and nutrient acquisition would increase in response to the future climate conditions. Furthermore, we expected that increased below-ground C allocation would enhance soil respiration (Rsoil).

Methods

Grassland communities were grown either at ambient temperatures with 375?ppm CO2 (Amb) or at ambient temperatures +3°C with 620?ppm CO2 (T+CO2).

Results

Total biomass production and GPP were stimulated under T+CO2. Above-ground biomass was increased under T+CO2 while belowground biomass was similar under both climates. The significant increase in root colonization intensity under T+CO2, and therefore the better contact between roots and AMF, probably determined the higher above-ground P and N content. Rsoil was not significantly affected by the future climate conditions, only showing a tendency to increase under future climate at the end of the season.

Conclusions

Newly established grasslands benefited from the exposure to elevated CO2 and temperature in terms of total biomass production; higher root AMF colonization may partly provide the nutrients required to sustain this growth response.  相似文献   

8.

Background

Two recent reviews raised a fundamental question: what is the time lag between photosynthetic C uptake and CO2 efflux from soil. Both reviews, however, in describing the linkages between CO2 assimilation and CO2 efflux from soil, were unable to evaluate the significance of two mechanisms i) the direct transport of assimilates to the roots and rhizosphere and ii) phloem pressure concentration waves. This uncertainty led to a further discussion about the suitability of labeling when evaluating time lags.

Scope

Here, we estimated the importance of the direct transport of assimilates to the rhizosphere and the importance of phloem pressure concentration waves by various approaches, and reveal further differences between both reviews.

Conclusions

We show that the pressure concentration waves only briefly play a role for CO2 efflux. In contrast, the direct transport influence lasts longer and so, it is more important for rhizosphere processes and for CO2 efflux. To evaluate the significance of these two mechanisms, we suggested a new approach based on regressions between the time lag and tree height, which confirms significance of pressure concentration waves only for trees, smaller than 2.5 m.  相似文献   

9.

Background and aims

Due to the high spatial and temporal variation in soil CO2 efflux, terrestrial carbon budgets rely on a detailed understanding of the drivers of soil respiration from a diverse range of ecosystems and climate zones. In this study we aim to evaluate the independent influence of vegetation structure and climate on soil CO2 efflux within cerrado ecosystems.

Methods

We examine the seasonal and diel variation of soil CO2 efflux, including its autotrophic and heterotrophic components, within two adjacent and structurally contrasting woody savannas in central Brazil.

Principle results

We found no significant difference in the annual soil CO2 efflux between the two stands (p?=?0.53) despite a clear disparity in both LAI (p?<?0.01) and leaf litterfall (p?<?0.01). The mean annual loss of carbon from the soil was 17.32(±1.48) Mg C?ha?1 of which approximately 63% was accounted for by autotrophic respiration. The relative contribution of autotrophic respiration varied seasonally between 55% in the wet season to 79% of the total soil CO2 efflux in the dry season. Furthermore, seasonal fluctuations of all the soil respiration components were strongly correlated with soil moisture (R 2?=?0.79–0.90, p?<?0.01).

Conclusions

Across these two structurally distinct cerrado stands, seasonal variations in rainfall, was the main driver of soil CO2 efflux and its components. Consequently, soil respiration within these ecosystems is likely to be highly sensitive to any changes in seasonal precipitation patterns.  相似文献   

10.

Aims

This study analyzed the extent to which root exudates diffuse from the root surface towards the soil depending on topsoil and subsoil properties and the effect of arbuscular mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere.

Methods

Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere compartments. 14CO2 pulse labeling enabled the measurement of 14C-labeled exudates in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by diffusion alone or by diffusion, root hair and hyphal transport.

Results

Root exudation and microbial decomposition of exudates was higher in the rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm (DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the low arbuscular mycorrhizal colonization of roots (13?±?4 % (topsoil properties) and 18?±?5 % (subsoil properties)), had no effect.

Conclusions

Higher microbial decomposition compensated for higher root exudation into the rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to the rhizosphere with subsoil properties. Higher 14C activity used for labeling compared with previous studies enabled the detection of low exudate concentrations at longer distances from the root surface.  相似文献   

11.

Background & Aim

Vascular plants may reduce episodic ebullition losses of methane (CH4) from peatlands. They transport CH4 to the atmosphere, which may lead to a reduction in pore-water [CH4], bubble formation and release. This effect may be compounded by rhizospheric oxidation and associated methanotrophy. However, any reduction in pore-water [CH4] may be countered by root exudation (substrate for methanogens). The aim of this study was to determine how the presence of sedges affects CH4 emissions from peatlands.

Methods

Five pairs of peat cores were collected from a raised bog. One of each pair contained Sphagnum cuspidatum and Eriophorum angustifolium (‘sedge’ cores); the other was dominated by S. cuspidatum (‘no-sedge’). From these the total CH4 efflux—including that due to episodic ebullition—were measured. A partial-shading treatment helped isolate the potential effect of root exudation.

Results

Sedge samples had significantly higher CH4 fluxes than no-sedge samples, but episodic-ebullition fluxes were not significantly different. Between full-light and partially-shaded conditions, there was a significant increase in the difference in CH4 fluxes between the sedge and no-sedge cores.

Conclusion

The higher rates of CH4 flux from the sedge cores cannot be explained simply by higher rates of CH4 production due to rapid utilisation of exudates.  相似文献   

12.

Aims

We examine how root system demography and morphology are affected by air warming and multiple, simultaneous climate change drivers.

Methods

Using minirhizotrons, we studied root growth, morphology, median longevity, risk of mortality and standing root pool in the upper soil horizon of a temperate grassland ecosystem for 3 years. Grassland monoliths were subjected to four climate treatments in a replicated additive design: control (C); elevated temperature (T); combined T and summer precipitation reduction (TD); combined TD and elevated atmospheric CO2 (TDCO2).

Results

Air warming (C vs T) and the combined climate change treatment (C vs TDCO2) had a positive effect on root growth rate and standing root pool. However, root responses to climate treatment varied depending on diameter size class. For fine roots (≤ 0.1 mm), new root length and mortality increased under warming but decreased in response to elevated CO2 (TD vs TDCO2); for coarse roots (> 0.2 mm), length and mortality increased under both elevated CO2 and combined climate change drivers.

Conclusions

Our data suggest that the standing roots pool in our grassland system may increase under future climatic conditions. Contrasted behaviour of fine and coarse roots may correspond to differential root activity of these extreme diameter classes in future climate.  相似文献   

13.
Utilization of nitrogen in the form of either nitrate (NO 3 ? ) or ammonium (NH 4 + ) ions may affect the carbohydrate metabolism and energy budget of plants. Recent studies showed that greater expenses of NO 3 ? to NH 4 + reduction mostly occur in the roots and during darkness. Fertilization of corn with 15N-labeled nitrate and ammonium, combined with pulse labeling of plants in a 14CO2 atmosphere at the V6 and V8 growth stages, allowed us to evaluate the effect of N form on the CO2 efflux from soil. NH 4 + oxidation was inhibited by adding dicyandiamide. In respect to ammonium, nitrate addition increased root-derived CO2 efflux from corn by 2.6 times at stage V6 and by 1.8 times at stage V8. The time of peak 14CO2 efflux from soil also differed between two growing stages: at V6, efflux peaked only on the second day after pulse labeling, while at V8 this occurred within the first 6 h. The strong effect of NO 3 ? and NH 4 + on root respiration requires considering the N form in the soil and the nitrate reduction site location in a plant when modeling soil respiration changes and when separately estimating individual CO2 sources that contribute to the total soil CO2 efflux.  相似文献   

14.

Aims

This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

Methods

Both soil pot culture and hydroponic experiments were carried out to characterize plant biomass, root morphological parameters, and cadmium uptake in S. alfredii grown under ambient (350 μL L?1) or elevated (800 μL L?1) CO2.

Results

Elevated CO2 prompted the growth of S. alfredii, shoot and root biomass were increased by 24.6–36.7% and 35.0–52.1%, respectively, as compared with plants grown in ambient CO2. After 10 days growth in medium containing 50 μM Cd under elevated CO2, the development of lateral roots and root hairs were stimulated, additionally, root length, surface area, root volume and tip number were increased significantly, especially for the finest diameter roots. The total Cd uptake per pot was significantly greater under elevated CO2 than under ambient CO2. After 60 d growth, Cd phytoextraction efficiency was increased significantly in the elevated CO2 treatment.

Conclusions

Results suggested that the use of elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd-contaminated soil by S. alfredii.  相似文献   

15.

Background and Aims

Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.

Methods

Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.

Results

Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).

Conclusions

Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field.  相似文献   

16.

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.  相似文献   

17.

Background and aims

The response of soil respiration (SR) to elevated CO2 is driven by a number of processes and feedbacks. This work aims to i) detect the effect of elevated CO2 on soil respiration during the second rotation of a short rotation forest, at two levels of N availability; and ii) identify the main drivers behind any changes in soil respiration.

Methods

A poplar plantation (POP-EUROFACE) was grown for two rotations of 3 years under elevated CO2 maintained by a FACE (Free Air CO2 Enrichment) technique. Root biomass, litter production and soil respiration were followed for two consecutive years after coppice.

Results

In the plantation, the stimulation of fine root and litter production under elevated CO2 observed at the beginning of the rotation declined over time. Soil respiration (SR) was continuously stimulated by elevated CO2, with a much larger enhancement during the growing (up to 111 %) than in the dormant season (40 %). The SR increase at first appeared to be due to the increase in fine root biomass, but at the end of the 2nd rotation was supported by litter decomposition and the availability of labile C. Soil respiration increase under elevated CO2 was not affected by N availability.

Conclusions

The stimulation of SR by elevated CO2 was sustained by the decomposition of above and belowground litter and by the greater availability of easily decomposable substrates into the soil. In the final year as elevated CO2 did not increase C allocation to roots, the higher SR suggests greater C losses from the soil, thus reducing the potential for C accumulation.  相似文献   

18.

Background &; aims

Elevated atmospheric CO2 (eCO2) can affect soil-plant systems via stimulating plant growth, rhizosphere activity and the decomposition of added (crop residues) or existing (priming) soil organic carbon (C). Increases in C inputs via root exudation, rhizodeposition and root turnover are likely to alter the decomposition of crop residues but will ultimately depend on the N content of the residues and the soil.

Methods

Two soil column experiments were conducted under ambient CO2 (aCO2, 390 ppm) and eCO2 (700 ppm) in a glasshouse using dual-labelled (13C/15N) residues of wheat (Triticum aestivum cv. Yitpi) and field pea (Pisum sativum L. cv. PBA Twilight). The effects of eCO2 and soil N status on wheat rhizosphere activity and residue decomposition and also N recovery from crop residues with different N status (C/N ratio 19.4–115.4) by different plant treatments (wheat, wheat + 25 mg N kg?1 and field pea).

Results

Total belowground CO2 efflux was enhanced under eCO2 despite no increases in root biomass. Plants decreased residue decomposition, indicating a negative rhizosphere effect. For wheat, eCO2 reduced the negative rhizosphere effect, resulting in greater rates of decomposition and recovery of N from field pea residues, but only when N fertiliser was added. For field pea, eCO2 enhanced the negative rhizosphere effect resulting in lower decomposition rates and N recovery from field pea residue.

Conclusions

The effect of eCO2 on N utilisation varied with the type of residue, enhancing N utilisation of wheat but repressing that of field pea residues, which in turn could alter the amount of N supplied to subsequent crops. Furthermore, reduced decomposition of residues under eCO2 may slow the formation of new soil C and have implications for long-term soil fertility.
  相似文献   

19.

Background and aims

Climate warming, nitrogen (N) deposition and land use change are some of the drivers affecting ecosystem processes such as soil carbon (C) and N dynamics, yet the interactive effects of those drivers on ecosystem processes are poorly understood. This study aimed to understand mechanisms of interactive effects of temperature, form of N deposition and land use type on soil C and N mineralization.

Methods

We studied, in a laboratory incubation experiment, the effects of temperature (15 vs. 25 °C) and species of N deposition (NH4 +-N vs. NO3 ?-N) on soil CO2 efflux, dissolved organic C (DOC) and N (DON), NH4 +-N, and NO3 ?-N concentrations using intact soil columns collected from adjacent forest and grassland ecosystems in north-central Alberta.

Results

Temperature and land use type interacted to affect soil CO2 efflux, concentrations of DON, NH4 +-N and NO3 ?-N in most measurement times, with the higher incubation temperature resulted in the higher CO2 efflux and NH4 +-N concentrations in forest soils and higher DON and NO3 ?-N concentrations in grassland soils. Temperature and land use type affected the cumulative soil CO2 efflux, and DOC, DON, NH4 +-N and NO3 ?-N concentrations. The form of N added or its interaction with the other two factors did not affect any of the C and N cycling parameters.

Conclusions

Temperature and land use type were dominant factors affecting soil C loss, with the soil C in grassland soils more stable and resistant to temperature changes. The lack of short-term effects of the deposition of different N species on soil C and N mineralization suggest that maybe there was a threshold for the N effect to kick in and long-term experiments should be conducted to further elucidate the species of N deposition effects on soil C and N cycling in the studied systems.  相似文献   

20.

Background and aims

Rhizodeposition of plants is the most uncertain component of the carbon (C) cycle. By existing approaches the amount of rhizodeposition can only roughly be estimated since its persistence in soil is very short compared to other organic C pools. We suggest an approach to quantify rhizodeposition at the field scale by assuming a constant ratio between rhizodeposited-C to root-C.

Methods

Maize plants were pulse-labeled with 14CO2 under controlled conditions and the soil 14CO2 efflux was separated into root and rhizomicrobial respiration. The latter and the 14C activity remaining in the soil corresponded to total rhizodeposition. By relating rhizodeposited-14C to root-14C a rhizodeposition-to-root ratio of 0.56 was calculated. This ratio was applied to the root biomass C measured in the field to estimate rhizodeposition under field conditions.

Results

Maize allocated 298 kg C ha?1 as root-C and 166 kg C ha?1 as rhizodeposited-C belowground, 50 % of which were recovered in the upper 10 cm. The fate of rhizodeposits was estimated based on the 14C data, which showed that 62 % of total rhizodeposition was mineralized within 16 days, 7 % and 0.3 % was incorporated into microbial biomass and DOC, respectively, and 31 % was recovered in the soil.

Conclusions

We conclude that the present approach allows for an improved estimation of total rhizodeposition, since it accounts not only for the fraction of rhizodeposits remaining in soil, but also for that decomposed by microorganisms and released from the soil as CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号