首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Embothrium coccineum (R. et J. Forst.) is a Proteaceae species from the southern part of South America. South-central Chilean soils are younger and contain more phosphorus (P) than soils in Australia and South Africa, where Proteaceae are common. Phosphorus deficiency is the main factor promoting cluster-root formation in Proteaceae. It is not known, however, whether this also applies to E. coccineum, which grows on soils with higher P content.

Methods

Four-month-old seedlings were grown for 4 weeks in hydroponic cultures with 1 μM P or 50 μM P. The number of cluster roots, relative height increment, biomass distribution, cluster root/total root biomass ratio, foliar P concentration, root acid phosphatase activity and root carboxylate-exudation rates were determined.

Results

Seedlings growing at 50 μM P showed a 10?, 1.3? and 3.3-fold greater increase in relative height, total dry mass and foliar P concentration, respectively, compared with those grown at1 μM P. However, seedlings grown at 1 μM P showed a 5?, 16?, 1.7? and 1.3-fold greater number of cluster roots, cluster root/total root biomass ratio, phosphatase activity and total carboxylate exudation, respectively, as compared with those grown at 50 μM P.

Conclusions

A low P supply promotes the initiation, growth and metabolic activity of cluster roots which is in accordance with reports on Proteaceae species occurring in ancient and highly weathered soils.  相似文献   

2.

Aims

This study aimed to determine whether white lupin adaptation to moderately calcareous soils could be enhanced by lime-tolerant plants and Bradyrhizobium strains.

Methods

Fourteen landraces from Italy, Morocco and Egypt and some cultivars were grown in moderate-lime (ML) and low-lime (LL) soil with each of two inoculants, one commercial and one including three Bradyrhizobium strains well-nodulating under ML soil (isolated from other lupin species). Grain yield and above-ground biomass were assessed in large artificial environments that mimicked field conditions. Shoot, root and nodulation traits at onset of flowering were studied in a pot experiment.

Results

ML soil severely reduced plant yield, growth and nodulation but increased the harvest index relative to LL. Top-yielding genotypes for grain yield displayed significant rank inversion across soil types (P < 0.05). Lime-tolerant genotypes reduced their nodulation in ML soil less than limesusceptible ones. Some landraces outperformed the reference lime-tolerant cultivar Giza 1 in ML soil. One Italian landrace had a lime-tolerant response across agricultural locations. The Moroccan inoculant provided greater nodulation, more shoot residues but similar grain yield in ML soil, and less grain and shoot residues in LL soil, compared with the commercial inoculant.

Conclusions

Lupin adaptation to ML soil can be improved mainly through selection of lime-tolerant plants.  相似文献   

3.

Background and aims

The quantification of root dynamics remains a major challenge in ecological research because root sampling is laborious and prone to error due to unavoidable disturbance of the delicate soil-root interface. The objective of the present study was to quantify the distribution of the biomass and turnover of roots of poplars (Populus) and associated understory vegetation during the second growing season of a high-density short rotation coppice culture.

Methods

Roots were manually picked from soil samples collected with a soil core from narrow (75 cm apart) and wide rows (150 cm apart) of the double-row planting system from two genetically contrasting poplar genotypes. Several methods of estimating root production and turnover were compared.

Results

Poplar fine root biomass was higher in the narrow rows than in the wide rows. In spite of genetic differences in above-ground biomass, annual fine root productivity was similar for both genotypes (ca. 44 g DM m?2 year?1). Weed root biomass was equally distributed over the ground surface, and root productivity was more than two times higher compared to poplar fine roots (ca. 109 g DM m?2 year?1).

Conclusions

Early in SRC plantation development, weeds result in significant root competition to the crop tree poplars, but may confer certain ecosystem services such as carbon input to soil and retention of available soil N until the trees fully occupy the site.  相似文献   

4.
Genotypic variations in the adaptive response to low-phosphorus (P) stress and P-uptake efficiency have been widely reported in many crops. We conducted a pot experiment to evaluate the P-acquisition ability of two rapeseed (Brassica napus) genotypes supplied with two sparingly soluble sources of P, Al-P and Fe-P. Then, the root morphology, proton concentrations, and carboxylate content were investigated in a solution experiment to examine the genotypic difference in P-acquisition efficiency. Both genotypes produced greater biomass and accumulated more P when supplied with Al-P than when supplied with Fe-P. The P-efficient genotype 102 showed a significantly greater ability to deplete sparingly soluble P from the rhizosphere soil because of its greater biomass and higher P uptake compared with those of the P-inefficient genotype 105. In the solution experiment, the P-efficient genotype under low-P conditions developed dominant root morphological traits, and it showed more intensive rhizosphere acidification because of greater H+ efflux, higher H+-ATPase activity, and greater exudation of carboxylates than the P-inefficient genotype. Thus, a combination of morphological and physiological mechanisms contributed to the genotypic variation in the utilization of different sparingly soluble P sources in B. napus.  相似文献   

5.

Aims

The high concentrations of Mn, Fe and Al in acid soils during waterlogging impair root and shoot growth more severely in intolerant than tolerant wheat genotypes. This study aims to establish whether this difference in vegetative growth and survival during waterlogging (1) is verifiable across a range of tolerant/intolerant genotypes and acid soils, and (2) results in improved recovery after cessation of waterlogging and enhanced grain yield.

Methods

Wheat genotypes contrasting in their tolerance to ion toxicities were grown in four acid soils until 63DAS and maturity, with a 42-day waterlogging treatment imposed at 21 DAS.

Results

The shoot Al, Mn and Fe concentrations increased by up to 5-, 3- and 9-fold respectively due to waterlogging in various soils. Compared to the intolerant lines, Al-, Mn- and Fe-tolerant genotypes maintained a relatively lower increase in shoot concentrations of Al (79 vs. 117%), Mn (90 vs. 101%) and Fe (171 vs. 252%) and demonstrated better waterlogging tolerance at the vegetative stage expressed in relative root (38% vs. 25%) and shoot (62% vs. 52%) growth. After cessation of waterlogging and the continued growth to maturity, tolerant genotypes maintained a relatively lower plant concentration of Al, Mn and Fe, but produced a higher above-ground biomass (74% vs. 56%) and most importantly demonstrated improved waterlogging tolerance (a relative grain yield of 78% vs. 54%) compared to intolerant genotypes. Maturity following waterlogging stress was delayed less in tolerant than intolerant genotypes (114 vs. 124%, respectively), which would reduce the potential yield loss where post-anthesis coincides with drought.

Conclusions

The results confirm the validity of a novel approach of enhancing waterlogging tolerance of wheat genotypes grown in acid soil via increased tolerance to ion toxicities.  相似文献   

6.

Key message

Genetic variability in dry matter and manganese partitioning between source and sink organs was the key mechanism for Mn efficient rice genotypes to cope with Mn stress.

Abstract

Considerable differences exist among cereal genotypes to cope manganese (Mn) deficiency, but the underlying mechanisms are poorly understood. Minimal information regarding partitioning and/or remobilization of dry matter and Mn between source and sink organs exists in rice genotypes differing in Mn efficiency. The present study was aimed to assess the growth dynamics in terms of dry matter and Mn remobilization in the whole plant (leaves and tillers as source and panicles and grains as sink) during the grain development in diverse rice genotypes. The efficient genotypes accumulated higher dry matter than inefficient genotypes under low Mn level. The translocation index i.e., uptake in grain/total uptake was 0.11 in efficient genotype (PR 116) and 0.04 in inefficient genotypes (PR 111). The efficient genotype had higher grain Mn utilization efficiency of 0.71 in comparison to 0.48 of inefficient genotype indicating that in efficient genotype, Mn in grain produces more dry matter than inefficient genotypes. The efficient genotypes also had higher flag leaf area and nitrate reductase activity. The source of efficient genotypes contributed to a greater extent to developing sink but further mobilization to grain was hindered by panicle. The panicle of inefficient genotypes had higher per cent of Mn uptake than efficient genotypes indicating that Mn was least mobilized from panicle to grain in inefficient genotypes. The lower per cent uptake of Mn in efficient genotypes indicated that Mn was mobilized from panicle to developing grain and this led to higher Mn translocation index in grain of efficient genotypes. The uptake partitioning revealed that source of all genotypes mobilized the Mn towards the sink to almost same extent but it was the panicle where highest per cent uptake per plant was in inefficient genotypes and lowest in efficient genotypes. The lowest per cent uptake in panicle of efficient genotypes revealed that it supported developing grain to have highest translocation index.  相似文献   

7.

Background and aims

Understanding the interaction between crop roots and management and environmental factors can improve crop management and agricultural carbon sequestration. The objectives of this study were to determine the response of winter cereal root growth and aboveground–belowground biomass ratios to tillage and environmental factors in the Mediterranean region and to test an alternative approach to determine root surface area.

Methods

Winter cereal root growth and biomass ratios were studied in three sites with different yield potential according to their water deficit (high yield potential, HYP; medium yield potential, MYP; low yield potential, LYP) in the Ebro Valley (NE Spain). At all sites, three tillage systems were compared (conventional tillage, minimum tillage, no-tillage (NT)). Root surface density (RSD), soil water content, yield components, and grain yield were quantified and shoot-to-root and grain-to-root ratios were calculated. RSD was measured with the use of image analysis software comparing its performance to a more common intersection method.

Results

Significant differences on RSD between sites with different yield potential were found being the greatest at the HYP site and the lowest at the LYP one. Shoot-to-root ratio was 2.7 and 4.6 times greater at the HYP site than at the MYP and LYP sites, respectively. Moreover, the grain-to-root ratio was significantly affected by site, with a ratio that increased with yield potential. Tillage had no significant effects on RSD at any of the sites studied; however, tillage did affect grain yield, with NT having the greatest yields.

Conclusions

This study shows that in the Mediterranean dryland agroecosystems, winter cereals relative above- and belowground biomass growth is strongly affected by the yield potential of each area. NT in the Mediterranean areas does not limit cereal root growth and leads to greater grain yields. A highly significant linear relationship (P?<?0.001; r 2 0.77) was observed between the root surface values obtained with the free-software image analysis method and the most common intersection method, showing it to be a reliable method for quantifying root density.  相似文献   

8.

Background and aims

This study aims to investigate the effect of nitrogen (N) on grain phosphorus (P) accumulation in japonica rice.

Methods

Six cultivars with contrasting agronomic traits were grown for 3 years (from 2008 to 2010) of field experiments under seven N treatments and 1 year (in 2010) of pot experiments with five N treatments to study the effect of N on grain phosphorus accumulation and to explore its physiological foundation.

Results

Grain total P and phytic acid concentration showed a clearly decreasing trend as N rate increased for both field and pot experiments. Pot experiment revealed that application of N increase plant biomass, but tended to lower plant P uptake, especially for the split topdressing treatments. Both harvest index (HI) and P harvest index (PHI) increased with N rate, but PHI was consistently higher than HI, indicating the larger proportion of P translocation to grain than that of dry matter by N. Further, ratio of PHI/HI differed significantly among genotypes, but was stable across contrasting N treatments.

Conclusions

The combination of decreased plant P uptake and dilution effect of increased grain yield by N is proposed as underlying mechanism of the decreased grain P concentration by high N.  相似文献   

9.
Root carbon flow from an invasive plant to belowground foodwebs   总被引:1,自引:0,他引:1  

Aims

Soil foodwebs are based on plant production. This production enters belowground foodwebs via numerous pathways, with root pathways likely dominating supply. Indeed, root exudation may fuel 30–50?% of belowground activity with photosynthate fixed only hours earlier. Yet we have limited knowledge of root fluxes of recent-photosynthate from invasive plants to belowground foodwebs.

Methods

Using stable isotopes, we quantify the proportion of recent-photosynthate transferred belowground from the invasive grass Microstegium vimineum A. Camus, a widespread invader of forest understory. Given its minimal root biomass (~8?% of individual mass), we expected exudation to contribute little to belowground foodwebs.

Results

Within 2?days of 13C-labeling, we recover ~15?% of photosynthate carbon in microbial biomass. Recovery in root and dissolved organic carbon pools is consistently low (<2?%), suggesting these pools operate as ‘pipelines’ for carbon transport to soil microbes. The recovery of the label in wolf spiders – forest floor predators that feed on soil animals – highlights that root inputs of recent photosynthate can propagate rapidly through belowground foodwebs.

Conclusions

Our results suggest that root carbon-exudation, an unexplored process of invasive grass inputs to forest foodwebs, may be an important pathway through which invasive species affect the structure and function of recipient ecosystems.  相似文献   

10.

Background and aims

Australian herbaceous native species have evolved in phosphorus (P) impoverished soils. Our objective was to explore shoot and root adaptations of two of these species with potential to be developed as pasture plants, at low, moderate and high P supply after 4 and 7?weeks of growth.

Methods

A glasshouse experiment examined the effect of 5, 20 and 80?mg?P?kg?1 air-dry soil on growth, rhizosphere carboxylate content, and mineral nutrition of two Australian native perennials, Kennedia nigricans (Fabaceae) and Ptilotus polystachyus (Amaranthaceae), and the exotic Medicago sativa (Fabaceae).

Key results

Leaf P concentrations at P80 were 6, 14 and 52?mg?P?g?1 leaf dry weight for M. sativa, K. nigricans and P. polystachyus, respectively. As soil P concentration increased, rhizosphere carboxylate content decreased for M. sativa, increased and then decreased for K. nigricans and was unchanged for P. polystachyus. For all species, the contribution of malic acid declined at the second harvest. For all species and P treatments, the amount of rhizosphere carboxylates per unit root length decreased as root length of a plant increased. Plant P content was determined more by P uptake rate per unit root length and time than by root length. Uptake of Mo for all species, and uptake of K, Mg and Mn for P. polystachyus, increased with soil P concentration. Uptake of Fe and S was higher when the content of carboxylates in the rhizosphere was higher.

Conclusion

Root physiological adaptations (i.e. rhizosphere carboxylate content and P-uptake rate) are more important than morphological adaptations (i.e. root length and diameter) to enhance the uptake of P and cations.  相似文献   

11.

Background & Aims

Searching for root traits underpinning efficient nutrient acquisition has received increased attention in modern breeding programs aimed at improved crop productivity. Root models provide an opportunity to investigate root-soil interactions through representing the relationships between rooting traits and the non-uniform supply of soil resources. This study used simulation modelling to predict and identify phenotypic plasticity, root growth responses and phosphorus (P) use efficiency of contrasting Lupinus angustifolius genotypes to localised soil P in a glasshouse.

Methods

Two L. angustifolius genotypes with contrasting root systems were grown in cylindrical columns containing uniform soil with three P treatments (nil and 20 mg P kg?1 either top-dressed or banded) in the glasshouse. Computer simulations were carried out with root architecture model ROOTMAP which was parameterized with root architectural data from an earlier published hydroponic phenotyping study.

Results

The experimental and simulated results showed that plants supplied with banded P had the largest root system and the greatest P-uptake efficiency. The P addition significantly stimulated root branching in the topsoil, whereas plants with nil P had relatively deeper roots. Genotype-dependent root growth plasticity in response to P supply was shown, with the greatest response to banded P.

Conclusions

Both experimental and simulation outcomes demonstrated that 1) root hairs and root proliferation increased plant P acquisition and were more beneficial in the localised P fertilisation scenario, 2) placing P deeper in the soil might be a more effective fertilisation method with greater P uptake than top dressing, and 3) the combination of P foraging strategies (including root architecture, root hairs and root growth plasticity) is important for efficient P acquisition from a localised source of fertiliser P.  相似文献   

12.
We conducted field experiments over 2 years on two acid soils of southern Cameroon to test whether efficient uptake and use of phosphorus (P) from less available sources by grain legume genotypes could benefit subsequent rotational maize. We grew two crops each year. For the first crop we grew 4 genotypes of soybean and of cowpea, plus maize. For the second crop we grew maize. The first crops were fertilized with 0, 90 kg P ha−1 as phosphate rock (PR) or 30 kg P ha−1 as triple super phosphate (TSP). P application highly significantly increased shoot dry matter, P uptake, N2 fixation and grain yields of the grain legumes with TSP generally more effective than PR. Two of the soybean and two of the cowpea genotypes were more efficient at using P. Only the P-efficient soybean and cowpea genotypes increased subsequent maize yields. Yields of the subsequent maize grown in rotation were significantly correlated with shoot P uptake for which the quantity of P applied with the crop residues of the pre-crop appeared to be a major factor. We also grew the grain legumes in nutrient solutions and measured organic acid-anion exudation from roots, root-surface phosphatase-activity, and root morphological characteristics. Enhanced exudation of organic acid anions from roots of P-deprived plants might have contributed to the P acquisition efficiency under field conditions of the P-efficient cowpea genotypes and one of the P-efficient soybean genotypes. A higher activity of root-surface acid phosphatase might have been important for the other P-efficient soybean genotype. The results show, that the potential positive rotational effect of cowpea and soybean on the acid, highly P-sorbing soils of southern Cameroon depends on breeding and using P-efficient genotypes when sparingly soluble and suboptimal rates of soluble P fertilizers are used. Section Editor: N. J. Barrow  相似文献   

13.

Aims

The purpose of this study was to test the hypotheses that soil nutrient patchiness can differentially benefit the decomposition of root and shoot litters and that this facilitation depends on plant genotypes.

Methods

We grew 15 cultivars (i.e. genotypes) of winter wheat (Triticum aestivum L.) under uniform and patchy soil nutrients, and contrasted their biomass and the subsequent mass, carbon (C) and nitrogen (N) dynamics of their root and shoot litters.

Results

Under equal amounts of nutrients, patchy distribution increased root biomass and had no effects on shoot biomass and C:N ratios of roots and shoots. Roots and shoots decomposed more rapidly in patchy nutrients than in uniform nutrients, and reductions in root and shoot C:N ratios with decomposition were greater in patchy nutrients than uniform nutrients. Soil nutrient patchiness facilitated shoot decomposition more than root decomposition. The changes in C:N ratios with decomposition were correlated with initial C:N ratios of litter, regardless of roots or shoots. Litter potential yield, quality and decomposition were also affected by T. aestivum cultivars and their interactions with nutrient patchiness.

Conclusions

Soil nutrient patchiness can enhance C and N cycling and this effect depends strongly on genotypes of T. aestivum. Soil nutrient heterogeneity in plant communities also can enhance diversity in litter decomposition and associated biochemical and biological dynamics in the soil.  相似文献   

14.

Aims

Potatoes have an inadequate rooting system for efficient acquisition of water and minerals and use disproportionate amounts of irrigation and fertilizer. This research determines whether significant variation in rooting characteristics of potato exists, which characters correlate with final yield and whether a simple screen for rooting traits could be developed.

Methods

Twenty-eight genotypes of Solanum tuberosum groups Tuberosum and Phureja were grown in the field; eight replicate blocks to final harvest, while entire root systems were excavated from four blocks. Root classes were categorised and measured. The same measurements were made on these genotypes in the glasshouse, 2 weeks post emergence.

Results

In the field, total root length varied from 40 m to 112 m per plant. Final yield was correlated negatively with basal root specific root length and weakly but positively with total root weight. Solanum tuberosum group Phureja genotypes had more numerous roots and proportionally more basal than stolon roots compared with Solanum tuberosum, group Tuberosum genotypes. There were significant correlations between glasshouse and field measurements.

Conclusions

Our data demonstrate that variability in rooting traits amongst commercially available potato genotypes exists and a robust glasshouse screen has been developed. By measuring potato roots as described in this study, it is now possible to assess rooting traits of large populations of potato genotypes.  相似文献   

15.

Background and aims

Iron toxicity decreases rice (Oryza sativa) grain yield especially in acid soils after flooding. Our aim was to establish a high-throughput screening technique using nutrient solution culture for identifying Fe-toxicity-tolerant genotypes.

Methods

Varying levels of Fe, pH, and chelators in Yoshida nutrient solution culture were tested to maintain sufficient Fe2+ concentration over time to optimize the severity of Fe toxicity stress for distinguishing between a tolerant (Azucena) and sensitive (IR64) genotype. The optimized solution was tested on 20 diverse genotypes in the greenhouse, with measurement of leaf bronzing scores and plant growth characteristics at the seedling stage. The same 20 genotypes were grown to maturity in a field with natural Fe toxicity stress, with measurement of seedling-stage leaf bronzing scores and grain yield to determine their inter-relationship.

Results

Optimized nutrient solution conditions were 300 mg L?1 Fe supplied as Fe2+ at pH 4.0 with a 1:2 molar ratio of Fe:EDTA, which maintained sufficient Fe2+ stress over 5 days. The highest correlation of nutrient solution phenotypic data with field grain yield was found with leaf bronzing scores at 4 weeks, with a Pearson r of 0.628 for simple association and a Spearman corrected r of 0.610 for rank association (P?<?0.01) using 20 diverse rice genotypes with proven Fe toxicity tolerance reaction. The Leaf bronzing scores at 4 weeks in nutrient culture solution were also found highly correlated with LBS under natural field stress after 8 weeks that had highest correlation with grain yield under stress.

Conclusion

This culture solution-based standardized screening technique can be used in plant breeding programs as a high-throughput technique to identify genotypes tolerant to Fe toxicity.  相似文献   

16.
Z. Wang  J. Shen  F. Zhang 《Plant and Soil》2006,287(1-2):247-256
The study examined the interactive effect of pH and P supply on cluster-root formation, carboxylate exudation and proton release by an alkaline-tolerant lupin species (Lupinus pilosus Murr.) in nutrient solution. The plants were exposed to 1 (P1, deficient) and 50 μM P (P50, adequate) for 34 days in nutrient solution at either pH 5.6 or 7.8. Plant biomass was not influenced by pH at P1, but at P50 shoot and root dry weights were 23 and 18% higher, respectively, at pH 7.8 than at pH 5.6. There was no significant difference in plant biomass between two P treatments regardless of medium pH. Phosphorus deficiency increased significantly the number of the second-order lateral roots compared with the P50 treatment. Both total root length and specific root length of plants grown at pH 5.6 were higher than those at pH 7.8 regardless of P supply. Cluster roots were formed at P1, but cluster-root number was 2-fold higher at pH 7.8 than pH 5.6. Roots released 16 and 31% more protons at pH 5.6 and 7.8, respectively, in P1 than in P50 treatments, and the rate of proton release followed the similar pattern. At pH 5.6, citrate exudation rate was 0.39 μmol g−1 root DW h−1 at P1, but was under the detection limit at P50; at pH 7.8, it was 2.4-fold higher in P1 than in P50 plants. High pH significantly increased citrate exudation rate in comparison to pH 5.6. The uptake of anions P and S was inhibited at P1 and high pH increased cations Na, Mg and Ca uptake. The results suggested that enhanced cluster-root formation, proton release and citrate exudation may account for the mechanism of efficient P acquisition by alkaline-tolerant L. pilosus well adapted to calcareous soils. Cluster-root formation and citrate exudation in L. pilosus can be altered by medium pH and P deficiency. Phosphorus deficiency-induced proton release may be associated with the reduced anion uptake, but high pH-induced proton release may be partly attributed to increased cation uptake.  相似文献   

17.

Aims

This study analyzed the extent to which root exudates diffuse from the root surface towards the soil depending on topsoil and subsoil properties and the effect of arbuscular mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere.

Methods

Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere compartments. 14CO2 pulse labeling enabled the measurement of 14C-labeled exudates in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by diffusion alone or by diffusion, root hair and hyphal transport.

Results

Root exudation and microbial decomposition of exudates was higher in the rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm (DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the low arbuscular mycorrhizal colonization of roots (13?±?4 % (topsoil properties) and 18?±?5 % (subsoil properties)), had no effect.

Conclusions

Higher microbial decomposition compensated for higher root exudation into the rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to the rhizosphere with subsoil properties. Higher 14C activity used for labeling compared with previous studies enabled the detection of low exudate concentrations at longer distances from the root surface.  相似文献   

18.

Background and aims

Phosphorus (P) is a commonly limiting nutrient for plant growth in natural environments. Many legumes capable of N2-fixation require more P than non-legumes do. Some legume crops can use sparingly soluble forms of P such as iron phosphate much better than other species, but reports on the ability of woody legumes to access iron phosphate are rare.

Methods

Plants of four Acacia species (Acacia stipuligera F. Muell., A. ancistrocarpa Maiden & Blakely, A. stellaticeps Kodela, Tindale & D. Keith and A. robeorum Maslin), native to the Great Sandy Desert in north-western Australia, were grown in a glasshouse in river sand with different levels of iron phosphate, between 0 and 16?μg P g?1 sand. Plant growth, tissue P concentrations, and pH and carboxylates in the rhizosphere were measured.

Results

Growth of A. stipuligera and A. ancistrocarpa was not responsive to increased P supply; in contrast, A. stellaticeps and A. robeorum produced significantly more root and shoot dry mass at 8 and 16?μg P g?1 sand than at 0?μg P g?1 sand; differences in root mass ratio were significant between species but not between P treatments. A. robeorum was the only species colonised by mycorrhizal fungi, and the colonisation percentage decreased with increasing P supply. In all species, P-uptake rates and tissue P concentrations were significantly higher at greater P supply. Rhizosphere pH and the amount of carboxylates in the rhizosphere decreased with increasing P supply.

Conclusions

Net P uptake increased with increasing P supply, showing that the present Acacia species can access P from iron phosphate. However, due to their inherently slow growth rate, enhanced P supply did not increase growth of two of the four studied species. The ability of the Acacia species to access P from iron phosphate is presumably related with carboxylate exudation and rhizosphere acidification.  相似文献   

19.

Aims

In this study we quantified the annual soil CO2 efflux (annual SCE) of a short rotation coppice plantation in its establishment phase. We aimed to examine the effect of former (agricultural) land use type, inter-row spacing and genotype.

Methods

Annual SCE was quantified during the second growth year of the establishment rotation in a large scale poplar plantation in Flanders. Automated chambers were distributed over the two former land use types, the two different inter-row spacings and under two poplar genotypes. Additional measurements of C, N, P, K, Mg, Ca and Na concentrations of the soil, pH, bulk density, fine root biomass, microbial biomass C, soil mineralization rate, distance to trees and tree diameters were performed at the end of the second growth year.

Results

Total carbon loss from soil CO2 efflux was valued at 589 g m?2 yr?1. Annual SCE was higher in former pasture as compared to cropland, higher in the narrow than in the wider inter-row spacings, but no effect of genotype was found.

Conclusions

Spatial differences in site characteristics are of great importance for understanding the effect of ecosystem management and land use change on soil respiration processes and need to be taken into account in modeling efforts of the carbon balance.  相似文献   

20.

Backgrounds and aims

N rhizodeposition by legumes leads to enrichment of N in soils and in companion plants. N rhizodeposition can be divided into two major components, root exudation and root senescence. Our aim was to quantify N root exudation in white clover (Trifolium repens L.) through an estimation of short-term N rhizodeposition and to assess its impact on N transfer to companion perennial ryegrass (Lolium perenne L.) grown in mixture with clover.

Method

15N2 provided in the root atmosphere for 3 days was used to estimate transfer of symbiotically fixed nitrogen (SFN) to the growing medium by clover grown in pure stand and to ryegrass by clover grown in mixture for 2 months.

Results

The proportion of N rhizodeposited over the 3 days increased from 3.5 % of SFN in pure stand to 5.3 % in mixture. The 15N-enrichment of ammonium from the adhering substrate shows that a part of the rhizodeposited N was released in the form of ammonium. 4 % of the rhizodeposited N was taken up by ryegrass during the labelling period.

Conclusions

This study showed a significant contribution of root N exudation to the total N rhizodeposition of legumes and in the transfer of N to grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号